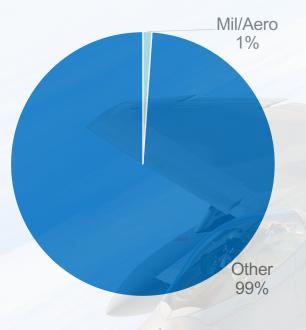
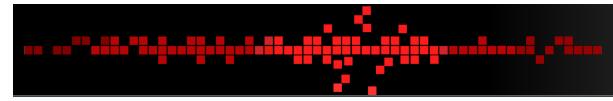


VORAGO TECHNOLOGIES

8th Interplanetary CubeSat Workshop, June 2019





Leveraging mainstream commercial technology – IP and wafer foundries

Semiconductor Market Share

- Space is a small fraction of mainstream semiconductor market
- Mainstream applications are what are driving semiconductor investments
- Semiconductor business going through consolidation phase which increases focus on big markets
- Efforts underway in space market to leverage COTS parts but there are some fundamental issues
- VORAGO leverages mainstream CMOS technology & infrastructure
 - Harden standard CMOS technology
 - Capability to run through any CMOS fab
 - Adopt industry standard IP like ARM™ cores
 - O Reuse IP modules and software to turn around designs faster

VORAGO Technologies

- Privately held fabless semiconductor company headquartered in Austin, TX
- Patented HARDSIL® foundation technology
- Focused on space technology since 2004. Commercializing technology since 2015

HARDSIL® - Technology

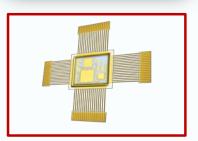
- Patented semiconductor technology (14 patents to date)
- Licensed to LSI, TI and Global Foundries
- Embedded into standard CMOS manufacturing process
 - Standard manufacturing equipment
 - Fully design agnostic
 - Eliminates latch-up
 - Enables high temperature performance beyond 200°C
 - No impact on transistor performance or yield
- Hardens silicon against radiation, temperature and electrical stress

HARDSIL® - Products

- Radiation hardened portfolio up to 300 krad(Si)
 - 8M & 16M SRAMs
 - O ARM® Cortex®-M0 MCU
- High temperature portfolio 200°C
 - O ARM® Cortex®-M0 MCU

Technology Capabilities

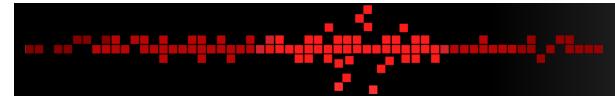
Technology Implementation


- Technology scalable to FinFET
- Implemented in 4 foundries
- Uses standard commercial processes and equipment
- Runs in any factory:
 - 3-4 months time to implement

Integrated Circuit Design

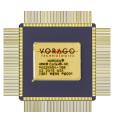
- Products qualified to QML level
- Strong flight heritage
- 5 products in production
- 3 products in development
- Radiation tested
- 10 products converted to HARDSIL

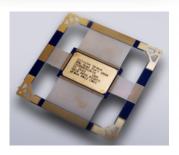
Multi Die Package Design



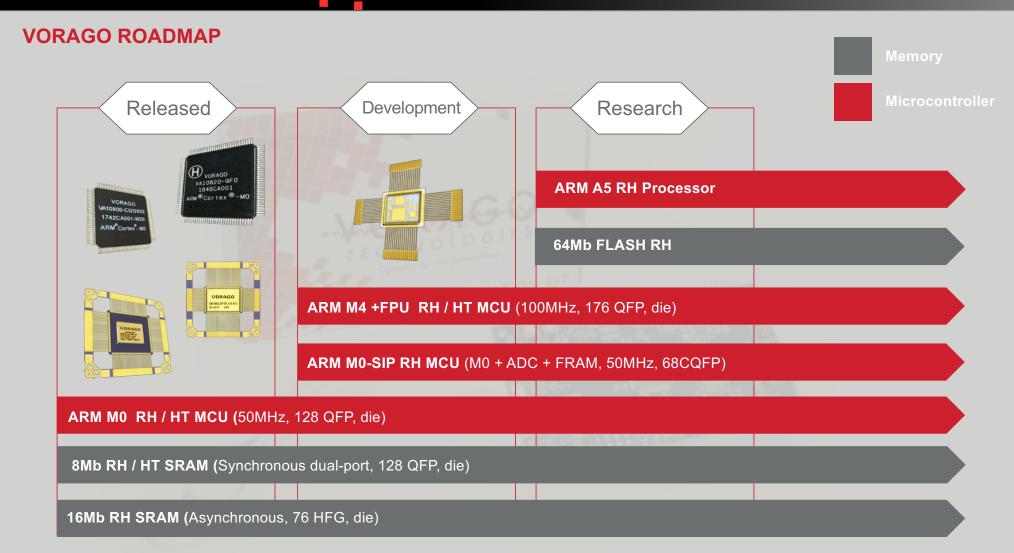
- Custom package and custom substrate development
- 2D, 3D packaging
- High reliability ceramic and plastic material
- QML in progress

Board Design


- Custom design (Altium)
- Custom firmware
- 3D model for assembly and easy mating
- Turnkey component purchase
- Custom test fixtures
- Automated testing and static
- Radiation testing

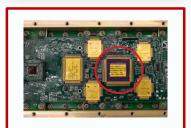

Released Products

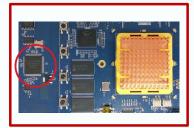
PA32KAS Microcontroller VA10820 Microcontroller VA10800 Microcontroller HS512K16 Dual-port SRAM SMV512K32 SRAM



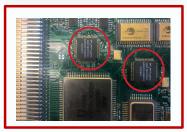
- 1st Gen MCU
- Operational on ISS and sun-synch orbit
- 2nd Gen MCU
- Operational on commercial and US Government CubeSats
- 200°C operation
- Aerospace distributed engine controls
- Downhole drilling
- Developed for MDA for missile interceptors
- Packaged version QML-V qualified
- Operational on ISS and prime aerospace satellites

<u>VoragoTech.com</u>




VORAGO MCU Use Case Configurations

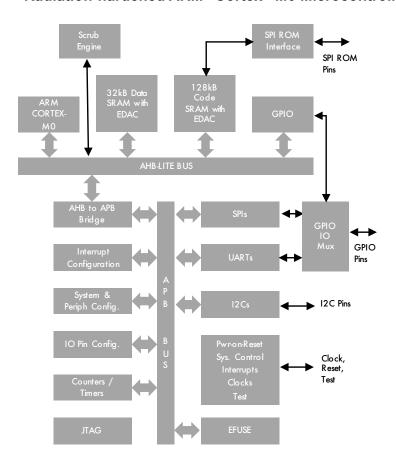
Main Processor



 MCU executes main control algorithm Watchdog Processor

MCU watchdog for FPGA

Multi Processor Configuration



 Distributed processing system using multiple MCUs

VA10820

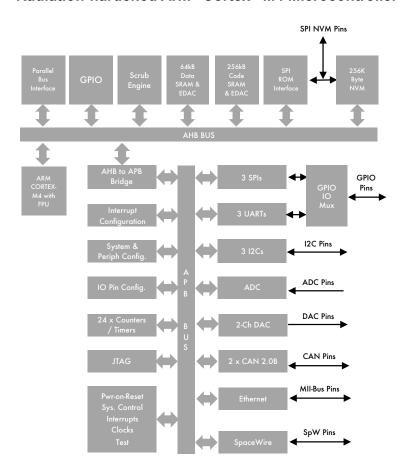
Radiation-hardened ARM® Cortex®-M0 Microcontroller

Key Features and Advantages

- Latch up Immune with HARDSIL® Hardened by Process Technology
- Power Gating and Hardware Debugger
- 32KB Data and 128KB Program Memory
- 1Kb One Time Programmable Configuration Memory (OTP)
- 24 Counter/Timers with Extensive Hardware/Software Triggering
- 3 SPI (one SPI is master only), 2 I²C, and 2 UART External Interfaces
- 56 Multiplexed General Purpose 3.3V I/O (GPIO)

Specifications

- Total Ionizing Dose (TID) 300K rad(Si)
- Soft Error Rate (SER) with EDAC enabled 1e-15 errors/bit-day
- Linear Energy Transfer (LET) 110 MeV-cm2/mg (at T=125C)


Description	Part number	Environment	Temperature Range	Package
Radiation- hardened microcontroller	VA10820- D0000F0PCA	Rad-hard 300K rad (Si)	-55 to 125°C	Die
Radiation- hardened microcontroller	VA10820- CQ128F0ECA	Rad-hard 300K rad (Si)	-55 to 125°C	Ceramic 128 LQFP
Radiation- hardened microcontroller	VA10820- PQ128F0PCA	Rad-hard 300K rad (Si)	-55 to 125°C	Plastic 128 LQFP

Vorago lech.com

VA41630

Radiation-hardened Arm® Cortex®-M4 Microcontroller

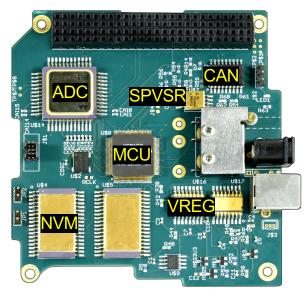
Specifications

• CPU: 100MHz Arm® Cortex®-M4 with Floating-Point Unit (FPU)

• Process: HARDSIL®

• **Voltage:** 3.3V

Package: 176 C/PQFP, die
 Temperature: - 55°C to 125°C

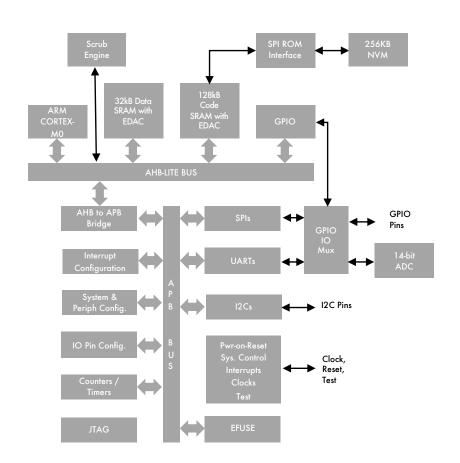

Key Features and Advantages*

- Latch up Immune with HARDSIL® Hardened by Process Technology
- SWD debug interface
- 64KB SRAM Data and 256KB EDAC Program Memory
- 256KB NVM
- 24-Ch, 32-bit Timers with Extensive Hardware/Software Triggering
- 3 SPI, 3 I²C, 3 UART, 2 CAN, Ethernet
- 8-Ch, 12-bit, 600Ksps ADC
- 2-Ch, 12-bit, 1MHz DAC
- Full-duplex 100MHz SpaceWire Interface
- DMA controller
- 104 Multiplexed General Purpose 3.3V I/O (GPIO)
- Memory configuration options
 - Internal NVM
 - External SPI NVM
 - External parallel NVM / SRAM

SWaP reduction using the VA41630

- The VORAGO radiation-hardened ARM® Cortex®-M4 based microcontroller integrates up to eight discrete IC functions into a single device.
 - Enables reductions in size, weight and power consumption. The integration also greatly simplifies design and logistics as well as improving reliability of electronic circuits

Chip-count reduction example


 The CubeSat on-board computer design can be optimized by replacing six devices with a single higher performance VA41630 MCU.

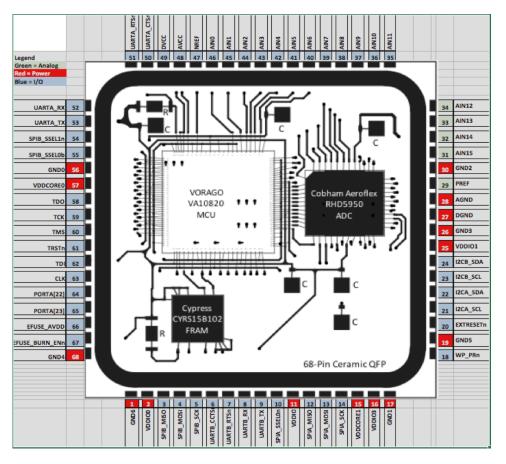
RH-OBC-1

VA10820-SIP

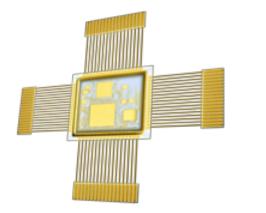
Radiation-hardened ARM® Cortex®-M0 Microcontroller with NVM, ADC

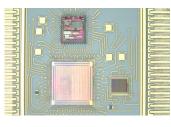
SIP

- VA10820 MCU
- Cobham RHD5950 ADC
- Cypress CYRS15B102 2 Mbit FRAM
- Six capacitors, two resistors
- Smallest possible package (23mm x 23mm)
- Approx. 5X smaller PCB area than using discrete ICs
- MIL-PRF-38534 Class K qualification
- Development kit and BSP


SIP Operation

- VA10820 boots from FRAM over SPI on power-up
- FRAM has 2X SRAM storage
- CPU executes from internal (protected) SRAM
- ADC connected on parallel ports (16-channels)
- 5V inputs on ADC, 3.3V I/O


VoragoTech.com



RH Embedded Processing System-In-Package

- 68-pin ceramic package
- VORAGO VA10820 MCU
- RH Aeroflex 16-Ch ADC
- Cypress FRAM
- Qualification MIL-PRF-38534 Class K

VoragoTech.com

VORAGIES TECHNOLOGIES

Opening up new possibilities