FEES
FLEXIBLE EXPERIMENTAL EMBEDDED SATELLITE

iCubeSat 28-29 May 2019
Politecnico di Milano

Contents

• Introduction

• Partners

• Mission: statement and primary objectives

• Mission: secondary objectives

• Orbit

• Current status

• Design

• Payload
Introduction

• **FEES** (Flexible Experimental Embedded Satellite) - a 1/3U CubeSat to be launched within Q1 2020 – is a *pico-platform* for technology IOV/IOT, focused on critical on-board subsystems, specifically miniaturized for such reduced platforms:
 - 10x10x3 cm volume
 - 300 g at most.
Partners

- **GP Advanced Projects**: project management and system engineering,

- **Laser navigation**: electronics and SDR, FW development,

- **Politecnico di Milano**: mission analysis, thermal analysis, ADCS algorithm, FW development, AIV/AIT,

- **Linkit**: TT&C,

- **Brno University**: total dose measurement,

- **CESI**: solar cells,

- **Università degli Studi di Perugia**: AIV/AIT.
Mission: statement and primary objective

« Flexible Experimental Embedded Satellite (FEES)’s goal is to validate an experimental platform for in-orbit testing of space components. »

• As previously introduced, the primary mission of the FEES is the in-orbit testing and validation of the S/C itself (e.g. Attitude Determination System) and the components defined as P/L. By doing so, FEES shall be considered a verified nano-platform for further launches, whether these will carry in-house designed components or stakeholder’s P/L.

• Requirements
 • 2 weeks survival in SSO
 • Subsystem’s testing
 • Data communication
Mission: secondary objectives

• Mission plan development:
 ➢ extending the possibility of carrying third party P/L; availability onboard the next S/C for a low price.

• Data retrieving and handling:
 ➢ Proving FEES is a useful, versatile platform for many LEO applications.

• Testing of Software Defined Radio (SDR) digital technology.
 ➢ Different communication protocols will allow to identify the best solution for future missions’ needs,
Orbit

- Type: Sun-synchronous
- Altitude: ~575 km
- Inclination: 97°
- RAAN: 264°
- Period: 1.6 h
- Eccentricity: ~0
- Duration: 15 days
Status

• PDR ✔
• QM – Manufacturing and Assembly ✔
 ➢ Boards
 ➢ Structure
 ➢ EGSE/MGSE
• Test Campaign (Qualification - QM)
 ➢ Late June 2019
• CDR
• Test Campaign (Acceptance - FM)
• Integration
• Launch (Soyuz-2, Q1 2020)
Systems

- Uplink 1260 MHz
- IRIDIUM antenna
- PC embedded magnetorquers and integrated electronics
- Earth sensor
- Raspberry Pi Zero
- 3.5 Ah 18650 LiPo
- Aluminum frame
- Bidirectional link, SDR downlink 435 MHz
- TMTC
- FEES closed/open comparison
Payload

• Complementary telecommunication system based on satellite calls constellation IRIDIUM (TBC regulations)

• RadEx2 (short for Radiation Experiment 2), a miniature-scale TID (total ionizing dose) experiment

• 2x2 cm experimental solar cells

• Software Defined Radio experiment

• Earth imaging camera
Thank you!

Giulio Morelli
Systems engineer at GP Advanced Projects
Mail: giulio.morelli@gpadvancedprojects.com
Tel: +39 030 7821542

Guido Parissenti
Roberto Navoni
Diego Ambrogi
Jiří Hofman
Marco Pavia
Giuseppe Gabetta
Stefano Ampolo
Yann Surel
Michèle Lavagna
Pasqualino Gramazio
Alfonso Niro
Andrea Colagrossi
Lorenzo Bucci
Jiří Haze
Bruna Bertucci

GP Advanced Projects
Laser Navigation
Brno University of Technology
Linkit
CESI
Politecnico di Milano
Brno University of Technology
Università degli Studi di Perugia