

Andreas M. Hein Martin Langer Elena Ancona Initiative for Interstellar Studies (i4is)

Charfield, United Kingdom

Contact : andreas.hein@i4is.org

A CubeSat-based Minimal Interstellar Mission

Introduction

CubeSats for interplanetary missions

Mars Cube One, Lunar Flashlight, and NEA Scout.

Mars Cube One

One Luna

Lunar Flashlight

NEA Scout Images: NASA

Is a CubeSat-based Solar System escape mission feasible?

Key Technologies Propulsion Solar system Kuiper 'Oumuamua Proxima Planet belt hyperbolic (launch in Nine Centauri objects (200-(268,000 excess [AU/a] 2028) vs trip duration (30 AU) 1200 AU) AU) [years] 33-200 44,600 5 14 6 **Electric sail** Advanced solar sail (ESTCube-1, ESAIL 4 10 29-171 38,230 (LightSail-1, FP7, ESTCube-2) LightSail.2, Lunar 3.7 8 25-150 33,450 8 Flashlight, NEA 3.3 6 22-133 29,700 Scout) 10 3 20-120 26,800 5

Potential targets

Images: NASA / ESO

(> 268,000 AU)

(11 'Oumuamua)

 Planet Nine
 Other stars

(200 – 1200 AU)

For all targets, high **solar system hyperbolic excess velocities > 20 km/s (4.2 AU/a)** are required.

Why a CubeSat?

- Availability of off-the-shelf technologies for deep space missions in the future
- Low mass: launch as secondary payload, low launch cost, multiple spacecraft

Science Objectives

- 1. Determine properties of the interstellar medium
- 2. Determine properties of the **heliopause**
- 3. In-situ observations of **minor bodies** (interstellar asteroids / comets, Kuiper belt objects) and **planets** (Planet Nine)

Both technologies are capable of reaching solar system hyperbolic excess velocities of at least 40 – 50 km/s (8.4 – 10.5 AU/a).

11

Image:Finnish

Meteorological Institute

<u>Power</u>

Image: Adrian Mann

Technology	Specific power	Potential	
RTG	2-2.2 We/kg	Specific power marginal	
Alphavoltaics	0.33 We/kg	Specific power too low	
Betavoltaics		Too heavy; too short half-life of Tritium / Promethium-147	Cube
CubeSat Nuclear D-cell battery (Thermophotovoltaics)	12-16 We/kg	Acceptable specific power	Cubes D-ce (Howe e
Microbal battery		Insufficient stability	

18-109 24,300

CubeSat nuclear D-cell battery (Howe et al., 2012)

Thermophotovoltaics seems to be the most promising technology for deep space CubeSat missions

Communication

(JPL Iris deep space transponder:

2.7

5

Optical communication (further miniaturization of existing technologies

4. In-situ analysis of ejecta of minor bodies (interstellar asteroids / comets, Kuiper belt objects) Potential Science Payload		(In L ins deep space transponder. 0.5 U; 1.2 kg; 26 W) Image: JPL Performance of existing CubeSat optical communication (pointing accuracy, single-photon detectors)	Image: JPL ation technologies requires improvement
		Sample Mission Concepts	
Payload	Associated science objective	Oberth maneuver 1: Jupiter-Solar Oberth r <i>Mission phases:</i>	
Dust counter Large aperture camera	Determine properties of the interstellar mediumIn-situ observations of minor bodies (interstellar asteroids / comets, Kuiper belt objects) and planets (Planet Nine)	 Earth escape trajectory to Jupiter Flyby at Jupiter 	Plyby of OUMUAMUA: Earth, Jupiter, 3 Solar Radii, Oumuamua 2029 APR 23 07:28:21 DISTANCE FROM SUN = 69.0AU SPEED = 55.7km/s DISTANCE TRAVELLED = 12025564425km
Small Impactor	In-situ analysis of ejecta of minor bodies (interstellar asteroids / comets, Kuiper belt objects)	 3. Solar approach trajectory 4. Boost at Perihelion 	
Mass spectrometer	In-situ analysis of ejecta of minor bodies (interstellar asteroids / comets, Kuiper belt objects)	5. Solar system escape trajectory	
Magnetometer	 a) Determine properties of the heliopause b) In-situ observations of minor bodies (interstellar asteroids / comets, Kuiper belt objects) and planets (Planet Nine) 	Oberth maneuver 2: Starshot	
Potential to use femto and measurements.	atto-scale spacecraft (ChipSats) swams for distributed	 Mission phases: 1. Geostationary or highly elliptic orbit 2. Laser boost 	2 1.5 1 10^{12} 0.5 15^{2}

