SurfSat - Spacecraft surface charging and ESD measurements

Adrienne Dove, Joshua Colwell, Janessa Buhler Dept. of Physics, University of Central Florida

> 4th Interplanetary CubeSat Workshop May 27, 2015

Electrostatic discharge events

Apollo 12

Spacecraft Surface Charging

- Spacecraft experience charging issues due to the ambient, dynamic plasma environment
- Differential buildup of charge can lead to ESD events
 - Higher energy electrons (>20 keV) dominate internal charging issues that can damage avionics
 - Lower energy electrons (<20keV) dominate surface charging, which can lead to external or internal damage
- Charging characteristics are highly dependent on orbit, but also depend on spacecraft materials
- Look for correlation between surface charging and solar cycle activity (Kp index)

SPACE FLORIDA

Launch Services Requirements

SurfSat design

SurfSat Science Requirements

- SurfSat will characterize ESD events on a CubeSat in a polar orbit
 - measure the ambient plasma environment
 - measure surface charge on relevant s/c materials
 - characterize current waveforms of discharge events

Science Requirements	Instrument Requirements
In-situ plasma density measurements	1. Range: 1x10 ¹⁰ – 5x10 ¹¹ m ⁻³ 2. Resolution: 5x10 ⁸ m ⁻³ 3. Sampling rate: 30 Hz
Surface potential measurements	1. Range: 1 - 10 ³ V 2. Resolution: 1 V 3. Sampling rate: 1-10 Hz
Surface discharge current measurements	1. Range: 350 MHz - GHz 2. Resolution: 1 ns 3. Sampling rate: 2 Gs/s

Charging on Dielectric Materials

 Samples will be selected based on preliminary laboratory testing

Material	Common Name	Bulk Resistivity (Ω-cm)	Dielectric Strength (V/mil)
Kapton HN	Kapton	~10 ¹⁷	7000
PTFE	Teflon	10 ²² - 10 ²⁴	>500
SiO2	Glass	10 ¹⁰ - 10 ¹⁴	230-350
AI	Alodine Al	10 ¹¹ -10 ¹³	800
AZ-93 / A-276	Thermal Paint	TBD	TBD
Ag or AL/FEP	Silver or Aluminum paint	TBD	TBD
L-T-80 Tape	Al tape w/ acrylic adhesive	TBD	TBD

- Materials will be selected
 - from a range of resistivity classes,
 - based on discharge characteristics, and
 - based on size and power requirements

Measuring Current Waveforms

- Currents will be measured with a charged plate analyzer
- Continually measure surface potentials
- Measure transient ESD events

Characterizing the Environment

 Measure the plasma environment with Langmuir Probes

Summary

- SurfSat will enable us to compare on-orbit ESD measurements with ground-based experiments
 - can be used to validate current plasma charging test methods and simulations
- Results will be used to develop
 - design criteria for spacecraft materials and
 - modified launch vehicle and timing constraints

