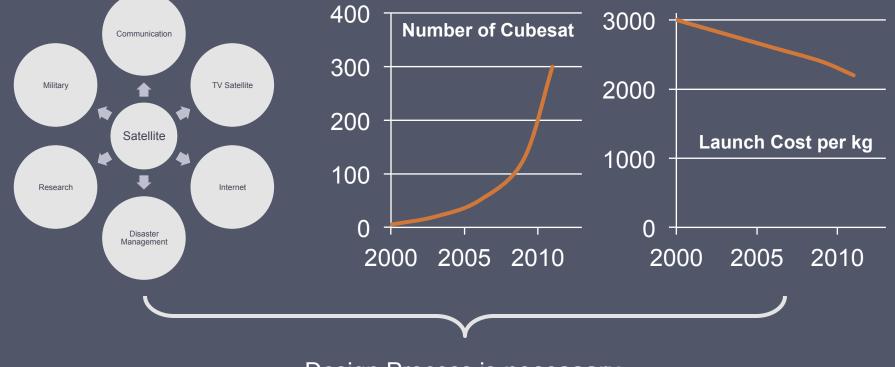

EARLY STAGE DEVELOPMENT OF DYNAMIC SIMULATION PLATFORM FOR REACTION WHEELS CONTROLLED CUBESAT MODEL


Ryan Fadhilah Hadi Dr. Rianto Adhy Sasongko Dr. Ridanto Eko Poetro

Background

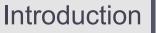
Introduction

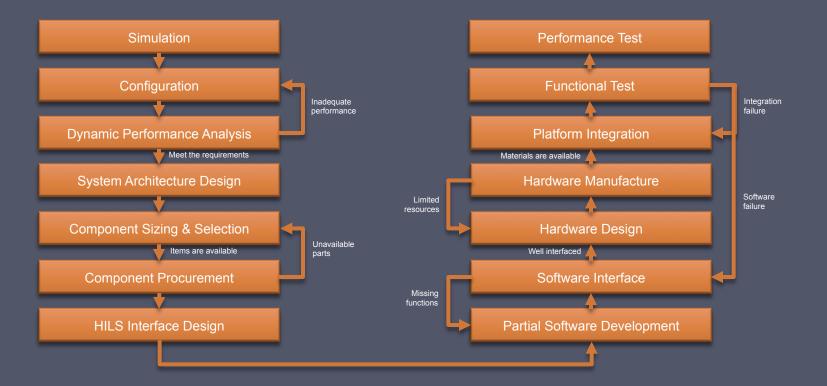
Design Process is necessary

Research Purposes

Introduction

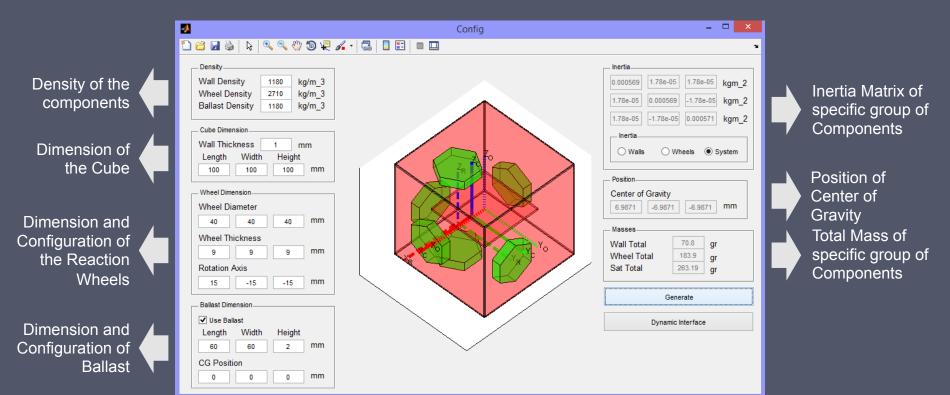
- 1. To develop a Cubesat Dynamic **Design Tool** to support the design process of the simulation platform.
- 2. To design, manufacture, test, and evaluate a simple <u>Cubesat model</u> and an <u>inertia platform</u> to support it. (*hardware simulation platform*)
- 3. To develop a <u>simulation system</u> to run the simulation process, including the interface between embedded system and station, user interface, and functions needed. (*software simulation platform*)


Scope of Problem



- 1. The platform is **designed for Cubesat**, sized 10 x 10 x 10 cm and weigh less than 1 kg.
- 2. The **embedded system** is replaced by **microcontroller**.
- 3. The <u>actuators</u> that are used are <u>modified motors</u> to mimic the function of reaction wheels.

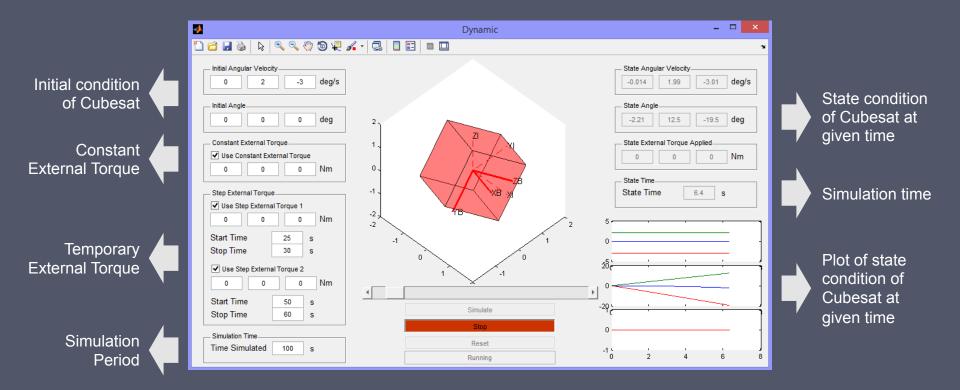
Methodology



Config Tool

Design Tools

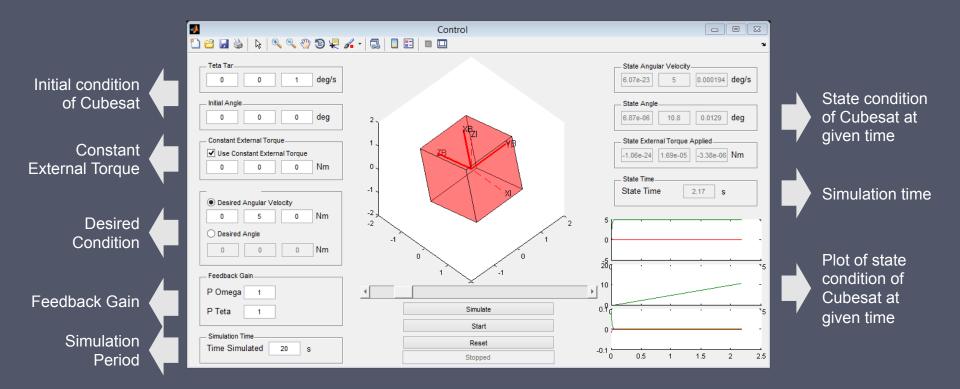
Configuration Tool Interface



Open Loop Tool

Design Tools

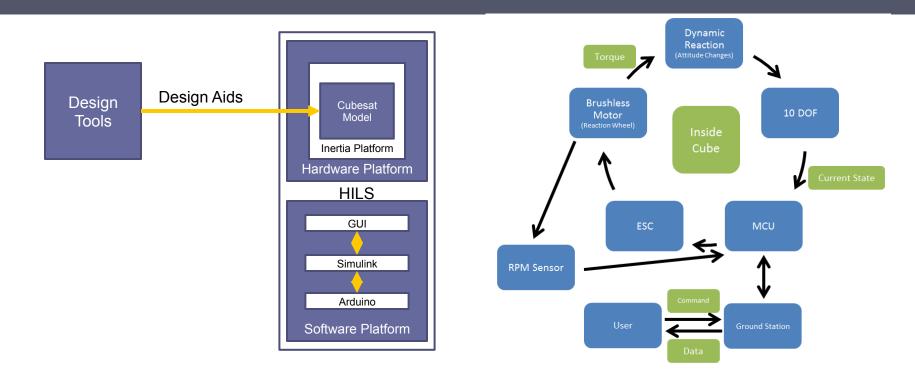
Open Loop Simulation Tool Interface



Closed Loop Tool

Design Tools

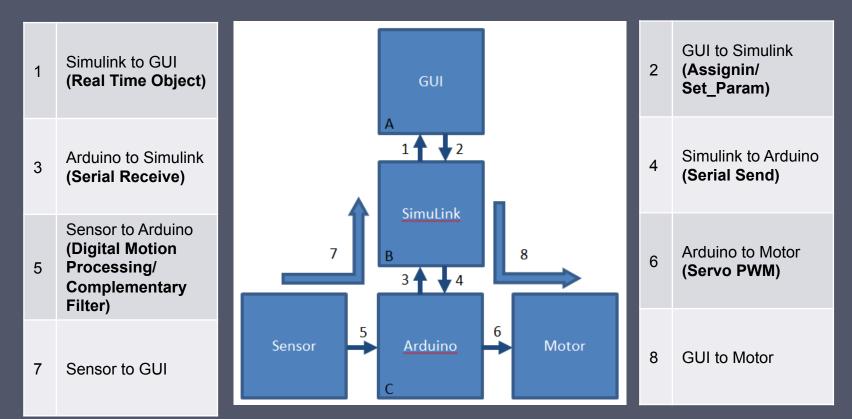
Closed Loop Simulation Tool Interface



Simulation Platform

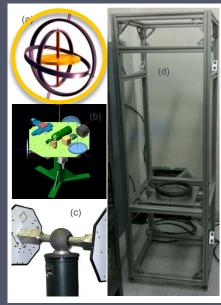
Whole System Architecture

Software

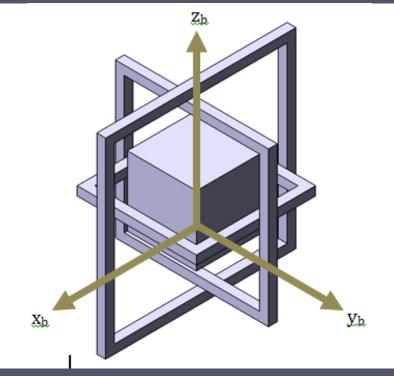

Simulation System Workflow

Software Development

Software


Hardware In Loop Simulation

Inertia Platform


Simulation Mechanism

- a. Gyroscopic Platform
- b. Air Bearing Tabletop
- c. Air Bearing Dumble
- d. Magnetic Levitating Platform

Inertia Platform Configuration

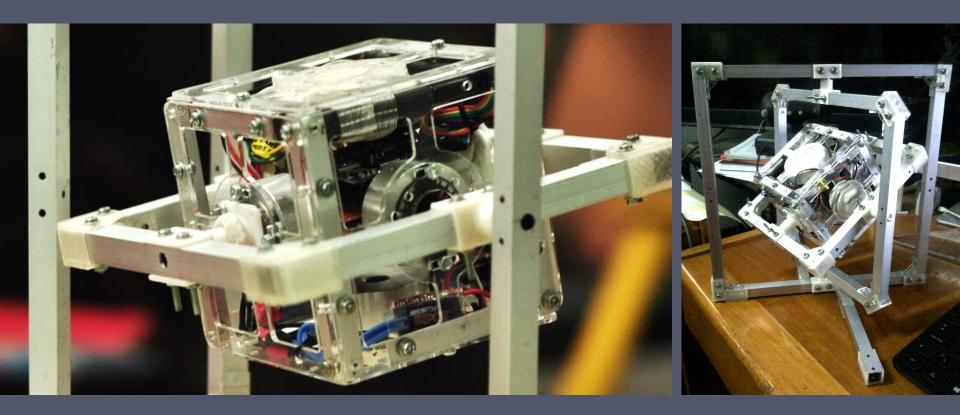
Cubesat Model

Modeled Subsystems

Structure	Aluminum & Acrylic
Thermal	-
OBC/OBDH	Microcontroller
ADCS	IMU – Reaction Wheels
EPS	Battery
COMM	Radio Telemetry
Propulsion	-
Payload	-

Bluetooth Module Wall MCU Supporting Structure 10 DOF Module Static Wheel Main Structure Reaction Wheel DC Brushless Motor LiPo Battery Speed Controllers

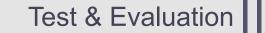
Cubesat Configuration


Hardware

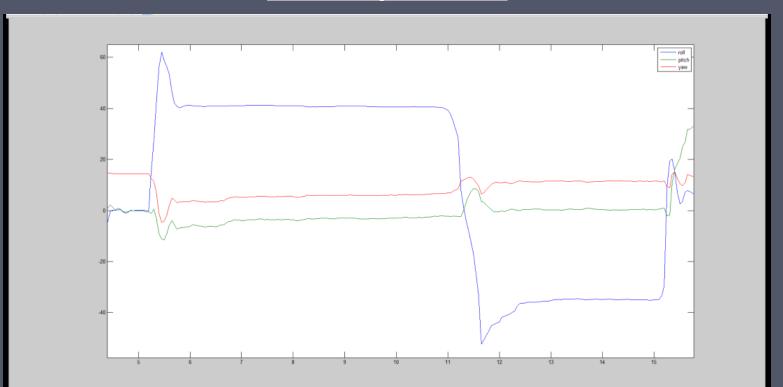
Here it is...

Simulation Platform

Command & Data


Test & Evaluation

Arduino Sensor Reading GUI RTO Receive Simulink Serial Receive 55.32 | 50.28 | 4.70 -_ 🗆 🗙 Main 55.35 | 50.30 | 4.71 55.36 | 50.34 | 4.70 55.38 | 50.36 | 4.70 55.17 | 50.01 | 4.71 Simulation Monitor 55.39 | 50.40 | 4.70 55.16 | 49.99 | 4.72 55.41 | 50.42 | 4.70 an 55.15 | 49.98 | 4.71 55.42 | 50.46 | 4.69 55.15 | 49.96 | 4.72 55.43 | 50.48 | 4.69 σD 55.14 | 49.96 | 4.71 55.45 | 50.51 | 4.69 m 55.14 | 49.94 | 4.72 55.47 | 50.54 | 4.69 55.13 | 49.94 | 4.72 55.48 | 50.56 | 4.69 20 55.13 | 49.93 | 4.72 55.49 | 50.59 | 4.69 55.13 | 49.93 | 4.72 Π 55.50 | 50.61 | 4.69 sm 55.13 | 49.93 | 4.72 55.52 | 50.64 | 4.69 ypr -1 55.13 | 49.93 | 4.72 55.53 | 50.65 | 4.68 55.13 | 49.94 | 4.72 55.53 | 50.67 | 4.67 -2 -500 \ 55.14 | 49.95 | 4.72 55.55 | 50.69 | 4.67 -2 55.14 | 49.95 | 4.73 55.55 | 50.71 | 4.67 55.15 | 49.96 | 4.72 55.57 | 50.72 | 4.67 55.15 | 49.97 | 4.72 55.57 | 50.73 | 4.67 8.93 55.16 | 49.99 | 4.72 55.58 | 50.74 | 4.67 55.17 | 50.01 | 4.72 55.58 | 50.75 | 4.67 55.18 | 50.03 | 4.72 55.58 | 50.75 | 4.67 55.19 | 50.04 | 4.72 55.58 | 50.75 | 4.67 55.20 | 50.07 | 4.72 ypr 55.58 | 50.75 | 4.67 55.21 | 50.09 | 4.72 55.58 | 50.75 | 4.67 55.23 | 50.12 | 4.71 55.58 | 50.75 | 4.67 55.24 | 50.14 | 4.71 55.26 | 50.17 | 4.71 ✓ Autoscroll 55.27 | 50.20 | 4.71 20 acc 55.30 | 50.22 | 4.70 55.30 | 50.25 | 4.70 Teta (deg) Acc (point **Command Assigning** -73 19.3 8.93 611 228 1.57e+03 - Omega (deg/s) Update -0.112 -0.0928 -1.4 **Simulink Serial Send GUI Simulation Update**


Test & Evaluation GUI - • × 4 Interface 1) 🖆 🛃 🎍 🔖 🔍 🔍 🖑 19 🐙 🔏 - 🗔 🔲 🖽 💷 💷 34 Inputteta x (deg) teta v (ded) teta z (deg) ŧΠ. 100 Open Loop 20 Reaction Wheels Angular Velocity Input (RPM) 50 П 0 0 0 -20 100 п 20 л 60 con i π iΠ. 60 នា Send Command omega x (deg/s) omega y (deg/s) omega z (deg/s) 200 50 I 200 Closed Loop Ζ7Β. Teta Target (deg) п 1 n IA. 0 -200 -400 0 Send Command 100 п 20 40 60 80 100 m ធា 80 20 40 60 80 100 п wheels angular vel x (RPM) - Input wheels angular vel y (RPM) - Input wheels angular vel z (RPM) - Input 91 91 91 Teta (deg) -1 -0.869 2.18 9.49 90 90 on. -2 -2 Omega (deg/s). 89 Π. 20 40 60 80 100 Ξ. 20 łΠ. 60 80 100 Π. 20 40 60 80 100 9.21 20.6 14.2 -1 wheels angular vel x (RPM) - output wheels angular vel y (RPM) - output wheels angular vel z (RPM) - output 91 91 91 Reaction Wheels Angular Velocity Input (RPM) n. 90 ar 90 90 90 90 36.5 89 Reaction Wheels Angular Velocity Output (RPM) Port_ Mode. Status ГП. 20 In 60 100 'n 20 чn ബ ສາ 100 ٦. 20 ŧΠ. 60 80 100 90 90 90 COM4 \bigcirc OMP O Comp Stop torque Input x (Nm) torque Input y (Nm) torque Input z (Nm) Torque Input (Nm)-Start Simulation 0 0 0 Connect 20 60 20 60 30 100 20 40 60 80 100 40 80 100 п 40

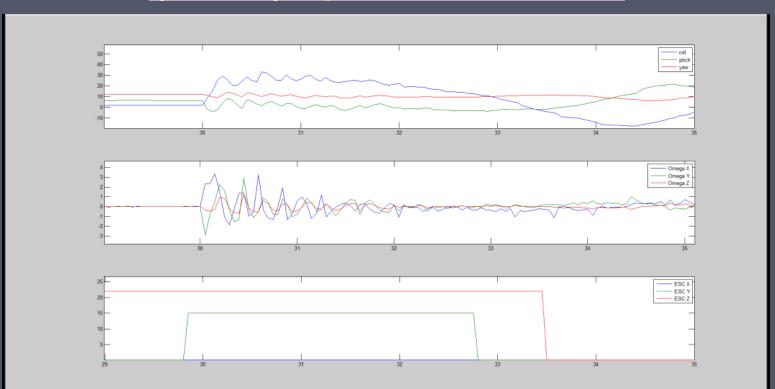
Functional Test

Static Test: Angle Measurement



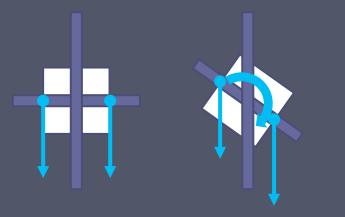
Functional Test

Dynamic Test: Reaction Wheels



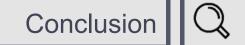
Functional Test

Dynamic Test: Gyroscopic Phenomenon with Reaction Wheels


Evaluation

Test & Evaluation

Design & Component Selection Evaluation


- 1. Gyroscopic Mechanism
- 2. Gravity Gradient
- 3. Bearing Lock

Encountered Problem

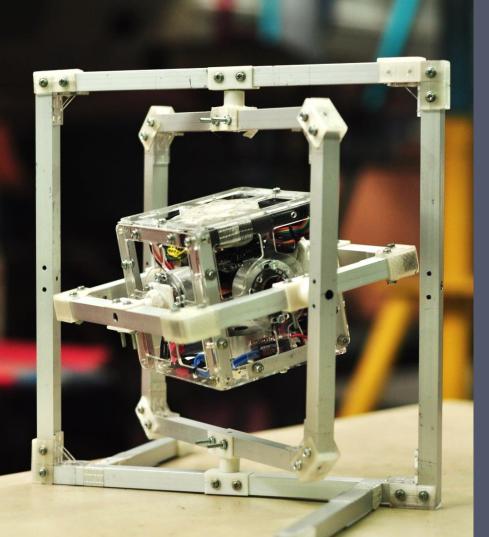
- 1. Wireless Communication \rightarrow Wired Communication
- 2. Cubesat Model Weight Distribution
- 3. Friction in the bearing lock
- 4. Wheel Balancing
- 5. Motors are stuttering in High RPM

Conclusion

- 1. the **simulation platform** that is intended to simulate the dynamic performance of a cubesat and to observe the capability of ADCS that is being used **has successfully been developed at early stage**.
- 2. Cubesat Dynamic Design Tool that has been built to support the design process of the Cubesat.
- 3. The simulation platform has been **tested and evaluated**, to be improved for further research.

Future Works

- 1. Hardware components have to be machined and/or processed in more proper way (balance, weight distribution, accuracy).
- 2. Component selection has to be reconsidered based on its performance.
- 3. A system to simulate perturbation in the outer space is also can be added.


References

Hutasuhut, H. M., "Early Development of Spacecraft Dynamic Simulator", Undergraduate Theses, Aeronautics and Astronautics Dept, Institut Teknologi Bandung, Indonesia, 2011.

Hadi, Ryan. F., and Sasongko, R. A., "Cubesat Dynamic Design and Visualization Tools in MatLab Environment", International Seminar on Aerospace Science and Technology 2014, Lembaga Penerbangan dan Antariksa, Tangerang (submitted for publication).

Hadi, Ryan. F., and Sasongko, R. A., "Dynamic Simulation Platform Design for Cubesat with Reaction Wheel Control System", AIAA Reg VII-AU Student Conference 2014, AIAA (submitted for competition).

Meissner, David M. A Three Degrees of Freedom Test-Bed for Nanosatellite and CubeSat Attitude Dynamics, Determination, and Control. Thesis. Naval Postgraduate School, 2009. N.p.: n.p., n.d. Print.

Thank you

The Outline