
Design and Implementation of Triple Modular
Redundant System on Linux-Based On-Board

Computer for CubeSat

Emir Husni, Angga Putra, Nazmi Febrian
Sekolah Teknik Elektro dan Informatika, Institut Teknologi Bandung

Jl. Ganesha no. 10, Bandung 40132, Indonesia
ehusni@lskk.ee.itb.ac.id

Triple modular redundant system was implemented on Intel
Galileo generation 1 as satellite on-board computer development
hardware. This system implemented as hardware fault tolerant
system for satellite on-board computer. Redundancy
implemented in on-board computer using bash shell script.
Simulation is carried out by testing various possible scenario. By
using this redundant system, system reliability level is improved
in terms of fault tolerance of on-board computer hardware. Each
on-board computer operate simultaneously and supporting each
other when failure happened.

Keyword(s) : fault tolerant system, satellite, redundancy, triple
modular redundancy, on board computer.

I. INTRODUCTION
One of the most important elements in the design of embedded
systems on the satellite system is hardware fault tolerance. The
system must be able to maintain its performance in carrying out
its mission despite the wide variety of faults on the space
environment.
Various kinds of disturbances on the satellite caused in by high
energy particles, such as single event effects, on the satellite
orbital systems can cause soft to hard failure. In the redundant
system, when one of the duplicated components fails, the other
redundant components designed to replace the role of the failed
components.
On satellite, redundant system design can improve the
reliability of data storage and data transmission from the
satellite to the ground station (GS). It is necessary to ensure
good synchronization between redundant components. When
the system is out of sync, the rate of data sent can be
significantly reduced.
Today, many orbiting satellite still using non-internet based
communication technology. On this research, development of
redundant system is implemented on Linux-based single board
computer that is Intel Galileo generation 1. By using Linux as
operating system, modern technology such as CAN-over-IP
and Interplanetary Overlay Network can be implemented on

satellite system. This redundancy is implemented using bash
shell script on each on-board computer.

II. SYSTEM ANALYSIS AND DESIGN
One of the stages in the design of redundant systems on
satellite on-board computer (OBC) is to ensure that the system
can continue its operation even though there is a failure in the
system for example, OBC that is not functioning due to
overheating or overcurrent caused by single event effects. Data
retrieval and communication with GS must still be made,
therefore, the systems must be designed to be fault tolerant.

There are various methods to design a fault tolerant system,
i.e. replication, redundancy and diversification. All this
methods can be implemented in form of hardware or software.
On this development, fault tolerant systems are implemented
in hardware redundancy of on-board computer.

Redundant system can be implemented on the dimensions of
space (space redundancy) and the dimension of time (time
redundancy). Implementation of time redundancy for example
is in the form of retransmission of the TCP protocol if the data
fails to be transmitted. While the implementation of space
redundancy is by duplicating the use of components with the
same function. System redundancy in OBC implemented due
to the following considerations:

• How important the component is in the system?
OBC is a very critical component as the central
processing of all of the satellite activities, such as
data acquisition, data processing, data transmission,
power settings, scheduling, etc.

• How likely the component to be fail? Trapped
protons in LEO contribute to the occurrence of single
event effects on the electronic components that can
resulted in errors of the electronic components.

• How expensive to make a component into a fault
tolerant? By applying the redundancy system in
OBC, the budget become more expensive. However,
this is comparable to the level of reliability obtained.
This will reduce the possibility of lost contact with
the satellite when it is orbiting.

A. Hardware Design
Triple modular redundant system is implemented by using
three single board computers as on-board data handling
(OBDH) connected with each other through passive switch as
follows:

Figure 1 Hardware Design

These components are integrated to form a system. Each OBC
has different priorities in transmitting and receiving data, while
the order of the components of the highest priority to a low are:

1. OBC-1
2. OBC-2
3. OBC-3

Each of these OBC can replace another OBC that has a higher
priority if the OBC with a higher priority fail.

B. Software Design
Software designed in development of this redundant system is
primarily based on synchronization of connection among the
three OBC. OBC-1 acts as the default primary OBC. As the
primary OBC, its function is to sending data to GS and
accepting and broadcasting software upgrade from GS to other
OBC. Data transmitted from OBC-1 to GS is taken from other
OBC. Below is a flow diagram of the OBC-1 function:

Request	
 data	

from	
 OBC-­‐2

OBC-­‐2	
 active? OBC-­‐3	
 active?

Request	
 data	

from	
 OBC-­‐3

Get	
 &	
 process	

data	
 from	
 sensor

Got	
 signal	

from	
 GS?

Send	
 data	
 to	
 GS;
Remove	
 data;

Get	
 update	
 from	
 GS;
Broadcast	
 update;

Replace	
 previous	

source	
 code	
 with	

updated	
 source	
 code;
Compile	
 and	
 run	

updated	
 program;

Yes

No

Yes No

No

Yes

get_data_obc1.sh

data_comm_obc1.sh

update_obc1.sh

Figure 2 OBC-1 Flowchart

By default, OBC-2 is the supporting OBC that processing and
transmitting platform data to OBC-1. OBC-2 will be taking
OBC-1 role as primary OBC if OBC-1 fail. OBC-2 flowchart
is as follows:

Get	
 &	
 process	

data	
 from	
 sensor

Got	
 signal	

from	
 GS	
 and	
 OBC-­‐1	

not	
 active?

Send	
 data	
 to	
 GS;
Remove	
 data;

Get	
 update	
 from	
 GS;
Send	
 update	
 to	
 OBC-­‐

3;

Replace	
 previous	

source	
 code	
 with	

updated	
 source	
 code;
Compile	
 and	
 run	

updated	
 program;

data_handling_obc2.sh

data_comm_obc2.sh

update_obc2.sh

Any	
 request
From	
 OBC-­‐1?

Send	
 data	
 to	

OBC-­‐1;

Remove	
 data;

Got	
 signal	

from	
 GS	
 and	
 OBC-­‐1	

active?

Remove	
 data;
Request	
 update	

from	
 OBC-­‐1;

No

No

Yes

Yes Yes

Figure 3 OBC-2 Flowchart

And then, there is OBC-3 as supporting OBC besides OBC-2.
OBC-1 will request data to OBC-3 if OBC-2 fails. OBC-3 will
take over OBC-1 role to communicate with GS if both OBC-1
and OBC-2 fails.

OBC-3 flowchart is as follows:

Get	
 &	
 process	

data	
 from	
 sensor

Send	
 data	
 to	
 GS;
Remove	
 data;

Get	
 update	
 from	
 GS;

Replace	
 previous	

source	
 code	
 with	

updated	
 source	
 code;
Compile	
 and	
 run	

updated	
 program;

data_handling_obc3.sh

data_comm_obc3.sh

update_obc3.sh

Any	
 request
From	
 OBC-­‐1?

Send	
 data	
 to	

OBC-­‐1;

Remove	
 data;

Got	
 signal	

from	
 GS	
 and	
 OBC-­‐1	

active?

Remove	
 data;
Request	
 update	

from	
 OBC-­‐1;

No

No

Yes

Yes Yes

Got	
 signal	

from	
 GS	
 &	

OBC-­‐1	
 not	
 active	
 &
	
 OBC-­‐2	
 active?

Remove	
 data;
Request	
 update	

from	
 OBC-­‐2;

No

Yes

Got	
 signal	

from	
 GS	
 &	

OBC-­‐1	
 not	
 active	
 &
	
 OBC-­‐2	
 not	
 active?

Figure 4 OBC-3 Flowchart

As seen in the flow diagram, the main script on each OBC
work by calling other scripts that contains the program that
runs each sub-section of each task (retrieval and dissemination
of data, communication data to GS, and the process of
updating the software).

In a redundant system, the system is designed to be mutually
synchronized with one another via a data communication
process. Through this communication exchange, each OBC
mutually synchronized by knowing how other OBC
circumstances and can directly take over tasks of failed OBC.
Process that must be done by each of the OBC is defined in the
script based on a variety of combinations possible scenarios. In
short, this scenario can be divided into two different
conditions, i.e. when connected with GS and when not
connected. The combination of scenarios that may occur when
the OBC is not connected with the GS are as
follows:

GS P S S

GS P S FAIL

GS P FAIL S

GS FAIL P P

GS FAIL P FAIL

GS FAIL FAIL P

GS FAIL FAIL FAIL

Ground
Station OBC	
 1 OBC	
 2 OBC	
 3

GS P FAIL FAIL

Figure 5 Redundancy Scenario : Unconnected from GS

Above picture shows us data communication path between
each OBC on various scenarios (arrow sign). Primary OBC (P)
will request data from secondary OBC (S) in case of scenario 1
to scenario 3.
And scenarios that may happened when OBC connected with
GS are:

GS P S S

GS P S FAIL

GS P FAIL S

GS FAIL P S

GS FAIL FAIL P

GS FAIL FAIL FAIL

GS FAIL P FAIL

GS P FAIL FAIL

Ground
Station OBC	
 1 OBC	
 2 OBC	
 3

 Figure 6 Redundancy Scenario : Connected from GS

III. TESTING
The testing was done by simulating data transmission between
OBC via Ethernet cable, without corrupt and delay. The
purpose of this test is to know the performance of data request
hit and miss between OBC, total packet acquired between
OBC and first accumulated packet sent time between OBC
and GS on normal environment.
The testing was done on all scenario except the scenario where
all OBC fail simultaneously. This test was done by
transmitting dummy data and repeating each scenario testing
by five times to obtain the average result. Each scenario was
tested by using Low Earth Orbital time consideration, which is
around 100 minutes. OBC-GS communication duration
assumed to be 10 minutes. Then there is 90 minutes duration
that each OBC disconnected with GS. If every scenario except
when all OBC fail assumed to be happened during that time,
then each scenario has around 13 minutes duration.
Before the test is done, OBC was configured beforehand in
order to carry out functions in accordance with a
predetermined mission. The configuration is carried out as
follows:

No Configuration Status
1 Checking networks

availability among OBC
Success

2 Checking networks
availability between OBC and GS

Success

3 Giving priority to each OBC Success
4 Task takeover when higher Success

priority OBC fails
5 Filename and directory

management
Success

6 Data transmission between
OBC using 64-bit CAN over IP

Success

7 Data transmission between
OBC and GS using interplanetary
network

Success

8 Files compression in one file
with tar.gz extension before
sending process

Success

9 Limiting delivery time
allocation for each session to
avoid the cessation of the whole
process in case of failure at the
time of delivery

Success

10 Software update system
management based on filename

Success

11 Giving information of the
process phase name to shown in
the terminal

Success

12 Synchronized ransitions
between OBC functions through
the provision of delay

Success

A. Testing Results : OBC Disconnected from GS
When the OBC is not connected with the GS, the operation is
done in the form of data transmission between OBC
operations. The results obtained in the form of data sending
reliability between OBC in various situations. Each scenario is
tested on 13 minutes duration.
The test results demonstrate the success of the system
tolerances to failure to keep the transmission of data despite
the failure that caused the malfunctioning of OBC. The data
will continue to be acquired until all OBC fail.

OBC-­‐
1	

OBC-­‐
2	

OBC-­‐
3	

Request	
 Request	
 Total	

Packet	

Hit	
 Miss	
 Acquired	

(byte)	

P	
 S	
 S	
 13	
 5	
 6,299,264
P	
 S	
 FAIL	
 12	
 3	
 4,600,751
P	
 FAIL	
 S	
 11	
 10	
 4,600,860

P	
 FAIL	
 FAIL	
 no	

request	

no	

request	
 3,827,809

FAIL	
 P	
 P	
 no	

request	

no	

request	
 5,219,563

FAIL	
 P	
 FAIL	
 no	

request	

no	

request	
 5,219,608

FAIL	
 FAIL	
 P	
 no	

request	

no	

request	
 3,410,318

B. Testing Results : OBC connected with GS

At this time in addition to a process of exchanging data
between OBC, is also a process of sending data to the GS. In
addition, the OBC which serves as the main OBC will play
spread shipment of GS data, which is the script and the source
code that has been updated to then be compiled and run on
each targeted OBC. On this case, the first packet size that is
accumulated during OBC-GS disconnected is measured by
using maximum packet size acquired, that is 6,299,264 byte
per 13 minutes. Then on 90 minutes duration the accumulated
packet size is around 44.1 MB. This is the first packet data
size to be delivered to GS, which sent time is shown on table
below.

OBC-­‐1	
 OBC-­‐2	
 OBC-­‐3	

First	
 Packet	

Sent	
 Update	

Time	
 (s)	
 Success?	

P	
 S	
 S	
 15.03	
 YES	

P	
 S	
 FAIL	
 14.57	
 YES	

P	
 FAIL	
 S	
 14.8	
 YES	

P	
 FAIL	
 FAIL	
 14.2	
 YES	

FAIL	
 P	
 P	
 15.03	
 YES	

FAIL	
 P	
 FAIL	
 15.44	
 YES	

FAIL	
 FAIL	
 P	
 15.57	
 YES	

The test results show the success of system redundancy by
successfully transmitting data from OBC to GS despite the
failure that happened on two from three OBC at the same
time. Software upgrade successfully delivered and processed,
but only can be implemented on OBC that is still active during
the delivery process of data from GS to OBC.

Testing appearances on Linux terminal, are shown on the
following pictures:

Figure 7 OBC-3 took over OBC-2 roles in Transmitting
Data to OBC-1

Figure 8 OBC-3 as primary OBC for communicating with
GS when both OBC-2 and OBC-1 undetected (fail)

Figure 9 Script succesfully updated

IV. CONCLUSION

The conclusion of design and implementation of triple
modular redundant system on linux-based on-board computer
for LEO satellite is as follows:

- Redundant system can operate synchronously to establish
data communication between OBC

- Data will always be acquired and transmitted as long as
all three OBC aren’t failed simultaneously

- Remote software update is delivered and processed
successfully on all scenario

REFERENCES
1. Dubrova, E. (2013). “Fault-Tolerant Design”,

Springer, 2013
2. Avizienis, A. (1976). “Fault-Tolerant Systems”, IEEE

Transactions on Computers, vol. 25, no. 12 Jyh Shing
Roger Jang. 1997. Neuro Fuzzy and Soft Computing.

3. Johnson, B. W. (1984). "Fault-Tolerant Microprocessor-
Based Systems" IEEE Micro, vol. 4, no. 6.

4. Laprie, J. C. (1985). "Dependable Computing and Fault
Tolerance: Concepts and Terminology", Proceedings of
15th International Symposium on Fault-Tolerant
Computing (FTSC-15).

