Low Profile Aperture Coupled Microstrip Antenna for Inter CubeSat Communications

Faisel Tubbal Dr. Raad Raad A/Prof. Kwan-Wu Chin Mohamed Madni

School of Electrical, Computer and Telecommunications Engineering University of Wollongong, Northfields Ave, NSW, Australia, 2522

2015

Outline

Background

Cube satellite antenna design challenges The proposed configuration of antennas for inter CubeSat communications The design of an individual proposed Aperture coupling microstrip antenna Results

Background

Sun synchronies (Low Earth Orbit) Satellites

1

Large Satellite Weight = > 80 Kg Power = 1000 W

Pico Satellite (Cube Sate) Weight = 1 Kg Power = 2 W

Cube Satellite Antenna Design Challenges

1- Weight and size 2- Power consumption 3- Antenna Gain

4. Deployment mechanism

Small satellite (Cube satellite) Planar antenna (patch)

Large satellite Horn Antenna

The proposed configuration of six planar antennas

The individual ACM antenna design

Results

Using HFSS for simulating the antenna on 2U cubesat

The Quasi Newton method works on the basis of finding the minimum or maximum of a cost function by varying the variables to meet the constraints.

STI of ACM antenna design

