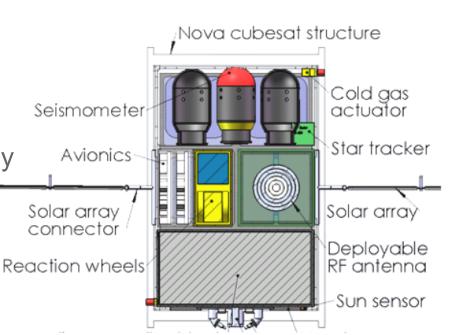
Using CubeSats to survey asteroids as part of an asteroid mining mission



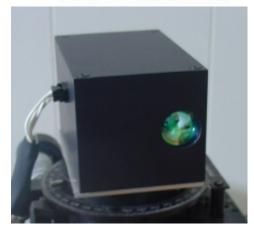
Presented by Kieran Hayward & Avi Ginsburg Prepared by Kieran Hayward, Avi Ginsburg and Chengyu Ma

Introduction

- The study focussed on mining water from NEAs in the region of 0.8-1.3AU.
- Minimum of 14 asteroids for P_{rich} in water.
- Two CubeSats designed to survey each asteroid.
 - One equipped with Laser communications and IR spectrometer.
 - Other equipped with deployable high gain antenna and penetrators.

Top Level System Requirements

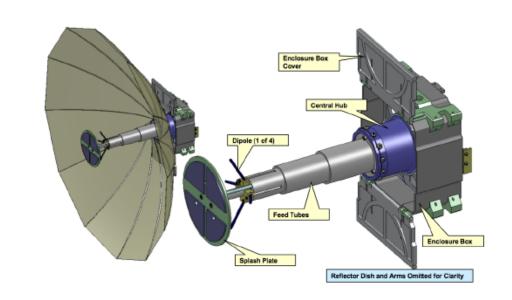
	Required	Achieved	
		Tyche	Autolycus
Development Cost	< \$50 million	\$30 million	
Mission Duration	< 450 days		
Wet Mass	<20 kg	17.04kg	19.41kg
Communication Data Rate	> 3kbps	10kbps	5kbps
Communication Range	> 0.5AU	0.5AU	0.5AU


- Data required:
 - Spin, Size, Landing sites
 - Chemical composition
 - Stratigraphic record

Cranfield

Payload

- IR Camera x2
 - OWL SW1.7CL 640
 - Used already in Aerospace Applications
 - 5W, 282g each
- IR Spectrometer
 - Thoth Argus 1000SK Spectrometer
 - Space Ready
 - 0.5W, 232g
- Seismic Penetrators x3
 - Unrivalled asteroid detail
 - Not yet prototyped
 - 2.3W, 1.2kg each


Seismic Penetrators

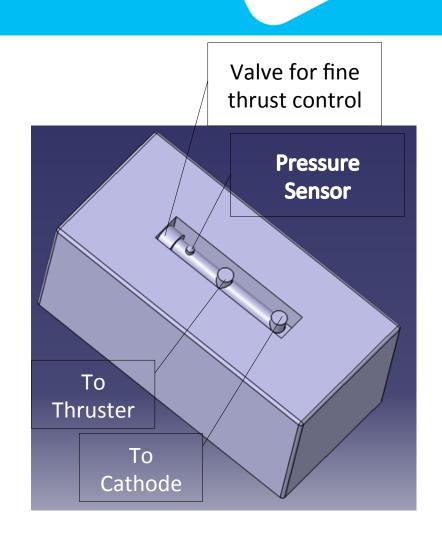
- 10cm long and 5cm in diameter
 - Blunt nose to minimise impact depth, varies from 0.2m to 11.67m
 - Varies due to asteroid composition and impact velocity
- Multi stage solid motor used for greater impact velocity
 - Isp 187s, V_{impact} from 20m/s to 40m/s
- 3 Axis Accelerometer and Thermistors/Thermocouples
 - Used in conjunction with two further impacts to determine stratigraphic asteroid makeup and temperature variation
- Microstrip Antenna
 - Used for comms with iCubeSat

Communications

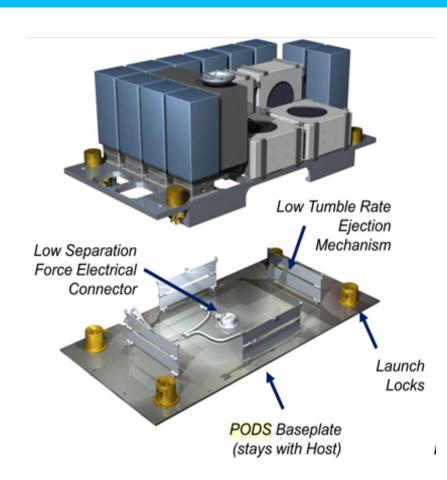
- Two types of communications system used
- Laser Communications
 - ADCS to minimise Transmitter Divergence Angle, 0.207 mRad
 - High Data Rate, 100Kbps
 - 24W
- Conventional Expandable Antenna
 - High reliance on ADCS
 - Smaller power req, 21W
 - Lower Data Rate, 50Kbps

Isotropic Antenna

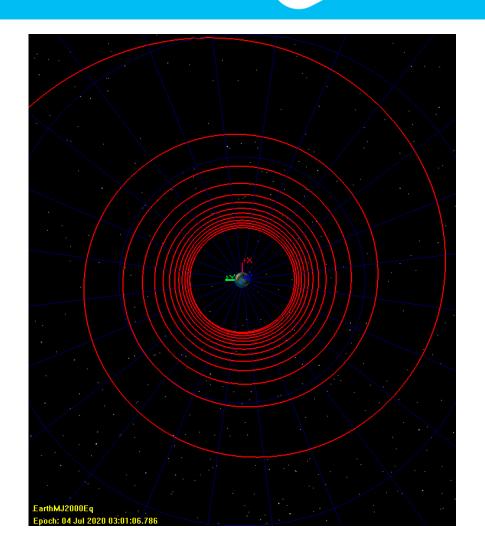
Propulsion


- To save cost CubeSats use on-board propulsion to reach asteroids.
- Busek BHT-200 Hall effect thruster.
- Produces 17mN thrust at 300W.
- $I \downarrow sp = 1390s$.
- Used on FalconSat-5 launched November 2010.

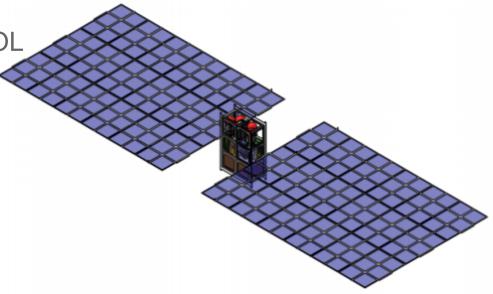
Propulsion


- Significant volume constraints in CubeSat.
- Iodine used as a propellant instead of Xenon.
- Storage density 3 times that of Xenon.
- Significantly lower cost.
- Lower pressure storage reduces tank mass.
- Stored as a solid which must be heated to a gas for use.
- Heating storage tank acts as coarse throttle control.

Launch


- CubeSat Launched into GEO
- Piggyback launch on telecommunications satellite using SSL 'PODS'
- 6-8 telecommunications satellite launches/year with SSL ~20/year in total.

Trajectories


- Low thrust trajectory
- Analytical method used at this stage for Earth escape
- MatLab script used to prove ability to reach from Earth escape to the required range of asteroids.

Cranfield

Power

- To reduce battery mass thruster will not be operated in eclipse.
- Eclipse avoided by launching into GEO.
- GaAs triple junction cells with BOL efficiency of 30% used.
- Total Solar array area of 2*m1*2
- Small Li-ion batteries used to allow payload to operate in asteroid eclipse.

AOCS

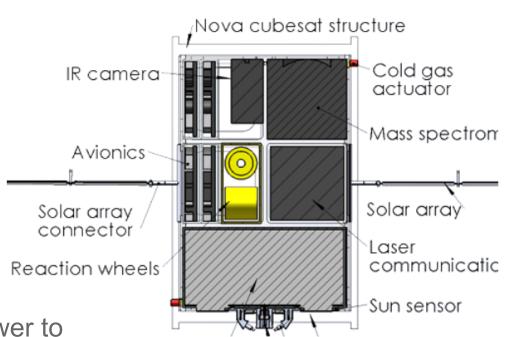
- High pointing accuracy for communications.
- Low jitter for clear images.
- Large solar arrays mean large moments of inertia.
- Large solar arrays will also be difficult to damp

I= [■■0.05&0.00 &0.00@■■0.00&2.85 @■0.00&0.00 &■0.00@2.91]kgm12

AOCS – Sensing & Actuation

- 2 2-axis sun sensors
- Star tracker on sun shadow face used for fine 3-axis attitude determination. (Accuracy of 6 arcseconds).
- Inertial measurement unit used to measure rates.
- Using BCT RWp100 Reaction wheels.
 - Low Jitter design
 - Larger than normally used on CubeSats
- Thruster System used for reaction Using a butane cold gas system in development by JPL.
- Further investigation on use of solar radiation pressure

Cost


- Where possible COTS parts have been used.
- Unavoidable for hall effect thruster.

	Orbiter	Penetrator
Payload	\$194,035.85	\$155,000.00
Structures	\$8,452.50	\$8,452.50
Thermal	\$100.00	\$100.00
Power	\$398,376.52	\$395,888.23
TT&C	\$5,000.00	\$5,000.00
Comms	\$10,000.00	\$5,000.00
OBDH	\$15,000.00	\$15,000.00
AOCS	\$54,500.00	\$54,500.00
Propulsion	\$90,000.00	\$90,000.00
Propulsion Fuel	\$2,562.03	\$2,562.03
Contingency	\$38,901.35	\$36,575.14
TOTAL	\$816,928.25	\$768,077.90

Conclusion & Further Work

- Top level design of two CubeSats for asteroid survey missions completed.
- Risks:
 - Radiation
 - Power requirement
 - Operating environment
- Further work:
 - AOCS design.
 - Generating sufficient power to start up HET.

