SSWARMS: SOLAR STORM WARNING AND RADIATION MONITORING SYSTEM

W. Edmonson, W. B. Moore, J. Bell, P. Wiwattananon, and R. Bryant

OUTLINE

- Rationale
- Space Weather Impact on Earth
- Solar Storm Warning and Monitoring System SSWARMS
 - Goals
 - Platform
 - Deployment
- Feasibility
- Team Members and Affiliations

RATIONALE

- To enable inter-planetary human exploration
- Master the persistent and grave danger of radiation
 - Solar Energetic Particles (SEP)
 - Galactic Cosmic Ray (GCR)
- Multi-point measurements will help constrain upstream (i.e., toward the sun) solar wind magnetic field and particle empirical models.
 - ENLIL—NASA Goddard
- SEPs stream along these field lines and pose a serious threat to humans traversing interplanetary space.
 - These are intense, directional, and potentially very hazardous.
- GCRs are modulated by the solar magnetic field, but only by a few percent.

EARTH'S SPACE WEATHER IMPACT

- Strong x-ray production from solar flares
 - Degrade or block radio communications
 - Pose a grave danger for astronauts traveling beyond Earth's orbit
- Coronal mass ejections (CME) cause geomagnetic storms
 - Degrade power grid operations
 - Degrade oil and water pipelines
 - Modify radio navigation signals; reducing accuracy
- Radiation poisoning caused by solar energetic particles (SEP)
 - Inability for humans to perform interplanetary travel

GOAL - SSWARMS

- Provide a continuous monitoring of the inner heliosphere and solar surface
- Empirical models, such as ENLIL, can be improved using continuous, multi-point measurements
 - Measuring magnetic field configuration
 - Particle output and SEPs streaming along field lines
- Inner heliosphere monitoring also provides the possibility of providing actionable information for humans in interplanetary space
 - Expected lead times of hours to days of warnings
 - System of watch/warning/alert similar to tornados allows modification of operations to maintain safety margins.
- For humans operating anywhere in the solar system without the protection of a planetary magnetic field.
 - Mars, asteroids (Ceres).

SSWARMS PLATFORM

- Multi-satellite solution
 - Heterogeneous suite
 - Replaceable
 - Helio-gyro solar sails
 - No fuel
 - Guidance and control
 - Pico-/nano-class of satellites

DEPLOYMENT

- Horseshoe orbits around Venus L4 and L5 LaGrange points
- Determine the distribution of the satellites
 - String of pearls like
 - Cluster
- Require a distribution that provides enough constraints for empirical models and enough coverage to provide actionable information.

DEPLOYMENT

PROGRAM FEASIBILITY

- Implemented in a step-wise fashion
- Integrated into existing facilities
 - STEREO
 - L1 instruments
- Design as an integrated sensor network

TEAM

- William Edmonson
 - NC A&T State University
- Williaim Moore
 - Hampton University
- Jared Bell
 - National Institute of Aerospace
- Peerawan Wiwattananon
 - NASA -LaRC
- Robert Bryant
 - NASA-LaRC

QUESTIONS