Enhanced electromagnetic sounding of Europa's ocean using CubeSats

Frank Crary, Justin Holmes,
David Malaspina, James Mason,
Drake Ranquist, Quintin
Schiller, Andrew Sturner,
and Rick Kohnert

Overview

- Science goals: Understanding Europa's ocean
 - Europa and its ocean
 - Magnetic induction sounding
 - Limits to induction sounding, ways to overcome these limits
 - Role of a CubeSat
- CubeSAt for ice Layer Thickness (CSALT) concept
 - CubeSats and the Europa Clipper mission
 - C-SALT concept and mission profile
 - Payload
 - Radiation and planetary protection
 - CubeSats and Flagship missions
 - Requirements for the carrier spacecraft

Europa's ocean

- Europa, one of Jupiter's
 Galilean moons, has a liquid ocean inside an icy surface
- Evidence includes surface geology, gravity field and magnetic sounding
 - Magnetic sounding considered the best proof although indirect
- Ice shell thickness is 0-200 km
- Ocean thickness is 200-0 km
- Studying this ocean is the main goal of NASA's Europa Clipper flagship mission
 - Launch planned for 2022

Galileo image of Conamara Chaos, Europa

4th Interplanetary CubeSat Workshop London, United Kingdom, May 26, 2015

Magnetic induction sounding

- Jupiter's magnetic field is tilted The background field at Europa rotates with a 11.1 hour period
- This produces an induced electric field which drives electric currents in the ocean

- These electric currents generate an induced magnetic field which spacecraft can observe during a flyby
- The Galileo magnetometer observed this induced field
 - The large uncertainty (>15%) limited the result to a detection
 - It could not a determination of ocean properties
- Measurements at 1% or lower uncertainty can reveal the ocean's depth, thickness and conductivity (salinity.)

Ocean induction versus plasma interaction

- Additional magnetic field perturbations from the interaction between Jupiter's magnetosphere and Europa's ionosphere
- Interaction introduces 10—100% systematic errors in induced field determination
- 1% accuracy needed to measure properties of the ocean (thickness, depth and salinity)

Galileo E4 measure and model of plasma interaction [Schilling et al. 2008]

Removing the plasma interaction signature

- Measure plasma interaction
 - Constrain theoretical models
 - Subtract model field from data
 - Very difficult at 1% level
 - Europa Clipper payload includes limited plasma instruments
- Use multiple encounters with different geometries

- Systematic errors from plasma interaction cancel out
- Requires multiple encounters at each phase of Jupiter's rotation
- Plasma conditions are time variable: Requires multiple encounters at each phase and geometry to average out variability
- Perhaps a dozen encounters per phase, more than Clipper has
- Use a sub-spacecraft (CubeSat)
 - Measure field along two different trajectories at the same time

CubeSats and Europa Clipper

- No current plans for CubeSats on Europa Clipper
 - In other words, this is a hypothetical exercise
- In July, 2014, JPL solicited proposals for "stud[ies] to address a mission concept for a small CubeSat spacecraft up to 3U in size that would be carried aboard the potential Europa Clipper spacecraft, released in the Jovian system and would make measurements of Europa."
- Assumes Clipper would keep batteries charged until deployment and relay communications with an omnidirectional antenna
- CubeSat should be 3U volume, <4.5 kg and stand-alone operations except for communications
- 10 proposals, including CSALT, were selected for ninemonth, \$25,000 studies

CubeSAt for ice Layer Thichness

(CSALT)

- Three 1U or Two 1.5U CubeSats
- Deploy 2 ¾ days prior to Europa encounter and drift
- Encounter Europa along a trajectory parallel to *Clipper* but separated by 1200 km
- Track spacecraft (ranging only)
- Measure magnetic fields during encounter (±1 hour, <10 R_F)
- Measure CubeSat orientation during encounter
 - No attitude control, only attitude determination
- Transmit data to Europa Clipper
- Repeat on 3 different encounters (3, 1U C-SALTs) or 2 different encounters (2, 1.5U C-Salts)
- If each encounter is worth a dozen Clipper-only encounters, this is a 50—75% improvement in Clipper's magnetic sounding

Artist's concept

Encounter timeline

- Deploy from Clipper at c/a 66 hours
 - Relative velocity 5 ± 0.4 m/s
 - 1200±100 km separation at closest approach
- Drift from c/a 66 to 3 hours
 - Magnetometer off
 - Radio and star tracker at 40% duty cycle
 - Estimated temperature -10° C
- Warm up from c/a -3 hours to -1 hour
 - All systems on with 100% duty cycle, radio transmit at 0.5 W
 - Warm to stable, operating temperature of +35° C
- Science phase, c/a ±1 hour (within 10 R_F of Europa)
 - When range increases to 3750 km (c/a +45 min) radio to 2 W
 - Temperature increases to less than +45° C
- Extended mission
 - 2 W telecom link to good to 7500 km (+2.2 hours)
 - Continue taking data until battery power runs out

CSALT Payload

	Mass [g]	Power [W] Drift/Sci1/Sci2			Based on
Magnetometer	295	0	0.45	0.45	LASP in development*
Star Tracker	300	0.375	0.75	0.75	Blue Canyon NanoStarTracker
Radio	150	0.35	0.7	2.2	AstroDev Lithium 1
Battery	195	69.48 W-hr			Boston Power 5300 Li-ion
PP/C&DH card	80	0.35	0.35	0.35	Custom
Structure/Misc.	265	0	0	0	Past LASP CubeSats
Total	1290	0.93	2.25	3.75	

All values without margin or contingency

Sci1 is Science phase range to *Clipper* < 3750 km, Sci 2 is range >3750 km *TRL4, other, similar magnetometers in development (e.g. JPL helium cell) Magnetometer assumes no boom (would require 1.5U with boom)

- Magnetically clean components exist, CubeSat-sized components exist
- Magnetic cleanliness study in progress

Radiation at Jupiter

- Europa Clipper is a high radiation mission
 - EOM total integrated dose behind 100 mils Al is 2.1 Mrad
 - Most is accumulated after beginning start of Europa phase
 - 117 krad at 1st Europa encounter, then 33 krad/enc.
- Clipper and CubeSat provide significant shielding
 - 1.33 kg/0.001 m³ is denser than water
 - Parts at the center have 970 mils Al equiv. shielding
- CSALT spacecraft deploy before the 5th encounter
- Estimated does at 5th encounter + nominal mission
 - 7.2 krad at CubeSat center, 82 krad at Cube face
- Manageable with rad hard parts
- Will require some replacement of parts or redesign of COTS components (everything)

Planetary Protection

- NASA has strong planetary protection requirements
 - Avoid contamination of subsurface ocean with microbes
 - If communication between surface and subsurface possible, also avoid contamination of surface
- Europa Clipper will impact Jupiter at end of mission
 - Requirements based on risk of accidental Europa impact
- CSALT will impact Europa, eventually
 - Left in Europa-crossing Jovian orbit
 - No propulsive capabilities to change orbit
 - Probably time to impact is 5 years
- CSALT has no shielded vault
 - After 5 years, every part exposed to 145 krad, some to 5 Mrad
 - Will eliminate bio-burden from all but extremophile bacteria
- Greater probability of impact offset by lower bio-burden
 - Pre-launch precautions similar to Clipper should be adequate

CubeSats and flagship missions

- CSALT fits into a 1U with no margin and COTS parts
- Parts will require some modifications
 - Replacement of radiation soft with radiation hard parts
- These parts are no longer TRL9
 - What margin would be required?
 - CubeSat design principles are based on Class D missions
 - Europa Clipper is a Class A mission ("Failure is not an option")
- Given redesign, some parts could be optimized
 - Magnetometer designed for ±64,000 nT, CSALT requires only ±1,000 nT.
 Would reduce power
 - Radio has unused high rate modes and features, lacks ranging and antenna selection (done by PP/C&DH card)
 - This is getting away from the CubeSat way of doing things
- Assumption for CSALT is 3, 1U CubeSats
 - Contingency for mass/power/volume growth is to descope to 2, 1.5U
 Cube Sats and science two, rather than three, encounters

Requirements on Europa Clipper

- Thermal
 - Maintain CubeSats at > 0° C prior to deployment
 - Li-ion battery charging requirement
- Deployment
 - Deploy CubeSats one at a time
 - P-POD releases all its contents at once
 - Non-standard deployer with arresting mechanism?
 - Non-standard deployers, one per 1U or 1.5U?
 - Deploy at 5 ± 0.4 m/s (18 km/hr or 11 mph)
 - Higher velocity than P-POD, stiffer springs
 - Higher precision than P-POD, test/select springs
 - Achieved with of Galileo, Huygens and Philae probes
 - Deploy with specified direction ±4°
 - Reorient spacecraft at c/a 66 hours

Requirements on Europa Clipper

- Telecommunications
 - Receive with omnidirectional antenna
 - Store data and retransmit to Earth
 - 1200 kbps for ~4 hours or less than 18 Mbits per enc.
 - Transmit to CubeSat for ranging and antenna selection

Ranging

- ±10 km per measurement
- Send and time return message to ±33 μs accuracy
- Large latency allowed, must be known and constant

Summary

- CubeSats can contribute to the Europa Clipper mission
- For CSALT the value is data along a parallel trajectory
- This sort of planetary CubeSat needs a carrier vehicle
 - Transport the CubeSat to the destination
 - Provide a communications relay
 - Provide ranging (navigation) support
- Some modifications to the deployer are necessary
- Some modifications to COTS parts are necessary
- There are inconsistencies between usual CubeSat development practices and Class A mission requirements
 - Needs to be resolved
- Planetary CubeSats are a good, viable concept