

A CubeSat for UV Astrophysics

R. Desselle

Nano-satellite for Astronomical Observations from Space (NAOS)

- Feasibility study: Develop a new space-based UV imaging photopolarimeter for acquiring timeseries of bright/massive stars
- Platform : 3U CubeSat
- Acquire time-series of photo-polarimetry in the [2500-3500]
 Å range to study the variability and environment of bright stars (with special focus on hot stars of spectral types O and B)

Scientific objectives

Photometry:

- Allows to study radial and non-radial pulsations of stars (i.e. asteroseismology)
- Simultaneous observations in the near UV (our instrument) and the visible (e.g. BRITE) provide the best combination for precise and accurate mode identification
- Studies of eclipsing binaries

Polarimetry:

- Allows to constrain the time-dependence and the origin of outflowing disks surrounding bright Be stars
- Allows to constrain the orbital inclinations of noneclipsing massive binary systems, thereby allowing an accurate determination of the masses of the stars combining the results with spectrometric measurements

Scientific requirements

Requirement	Goal
Passband	2500 – 3500 Å
Angular resolution	15 arcsec
Field of view	1°
Magnitude of main targets	V < 4
Photometric accuracy	0.001 mag
Typical exposure time	< 5 min
Mission lifetime	2 years
Pointing accuracy	15 arcsec
Pointing stability	a few arcsec
Duty cycle	60%
Polarisation accuracy	0.1%

Payload

- The photometer is a Ritchey-Chrétien telescope
- From end-to-end, the telescope fits into 1.5U
- Impact of the polarimeter is currently under investigation but it will be minor w.r.t. the optical design

Payload

- FoV = 1°
- Entrance pupil diameter= 90 mm
- Effective diameter = 80 mm
- PSF size = 4 pixels of 15
 x 15 μm
- Angular resolution =12.5 arcsec
- Telescope size = 1.5U

- The polarimeter will allow to test several technologies and raise their TRL for future missions such as the Arago M-class mission proposed to ESA (lead by CNES)
- Objectives are to measure all the Stokes parameters (I, Q, U and V)

$$\{ \blacksquare E \downarrow x = \xi \downarrow x \cos(\omega t - kz) \qquad E \downarrow y = \xi \downarrow y \cos(\omega t - kz + \delta)$$

$$\{ \blacksquare I = \xi \downarrow x \uparrow 2 + \xi \downarrow y \uparrow 2 \qquad Q = \xi \downarrow x \uparrow 2 - \xi \downarrow y \uparrow 2 \qquad U = 2\xi \downarrow x \xi \downarrow y \cos\delta \qquad V = 2\xi \downarrow x \xi \downarrow y \sin\delta$$

 The polarimeter will be composed of a stack of 4 MgF2 plates with different fast-axis angle and thickness that will modulate the input signal

Photometric budget

Photon flux ($photons\ cm \hat{1}-2\ s\hat{1}-1$) at the entrance of the photometer: $N=\int \lambda l 1=2500\ \mathring{A}\ \hat{1}\lambda l 2=3500\ \mathring{A}\ 8.412*10 \hat{1}34\ 10\hat{1}$ $-0.4(V-AlV+BC+Al\lambda)/Tleff\hat{1}4\ \lambda\hat{1}4\ (exp(1.439\ 10\hat{1}8\ /\lambda Tleff\)$

 $-1) d\lambda$

N can be evaluated as a function of V magnitude and $T \downarrow eff$.

A↓V is assumed to be between 0 and 3 for bright stars.

Photometric budget

Target baseline : Yale Bright Star Catalog $A \downarrow V$ values are coherent with our hypothesis :

Photometric budget

 $SNR\downarrow *$ computation : $SNR\downarrow * = nNA\downarrow eff$ $t\downarrow exp$ $\eta/\sqrt{nNA\downarrow eff}$ $t\downarrow exp$ $\eta+nPSF\downarrow size$ D $t\downarrow exp+nPSF\downarrow size$ $R\uparrow 2$

SNR $\downarrow*$ can be computed as a function of $T\downarrow eff$, $t\downarrow exp$, n and V.

Worst case:

n=1 $A \downarrow V = 3$ $T \downarrow eff = 15 200 K$

Conclusions

Scientific objectives & performances

- Optical design is optimized and responds to the scientific specifications
- The accommodation to the 3U platform has been checked
- The polarimeter has to be integrated

→ There is no show-stopper at instrument level

System level:

- Thermal model of the system should validate the feasibility of the mission with or without active thermal control
- Power budget should show if deployable solar panels are needed or not
- Assessment of data volume, storage capabilities and telemetry budget to be done
- Pointing accuracy and stability are challenging