

CubeSat Landing Opportunities for Binary Asteroid Exploration

Onur Celik, Dr. Joan-Pau Sanchez 4th iCubeSat Workshop, London 26.05.2015

Content

Cranfield UNIVERSITY

- Motivation
- Dynamical Model: Circular Restricted Three Body Problem (CR3BP)
- Mission Architecture
- Target Binary Asteroids
- Transfer Trajectory Generation
- Results
- Future Directions

Motivation

Small body exploration

- Scientific & Technological Challenge
- Resource Utilisation
- Planetary Defence

CubeSat

- Simple
- Low mass, low cost
- Increasing Reliability

Various CubeSats Credits: Staehle et al., 2011

Rosetta (right), Asteroid Impact Mission (AIM) (left).

Cranfield

Credits: ESA (2014, 2015),

4th iCubeSat Workshop, London, UK

Motivation

Exploiting astrodynamics: A different approach to landing problem

Dynamical Model: Circular Restricted Three Body Problem (CR3BP)

Cran

CR3BP: Equations of Motion

$y+2x=U\downarrow y=y-(1-\mu)y/r\downarrow 1\uparrow 3 -\mu y/r\downarrow 2\uparrow 3$

$$z = U \downarrow z = -(1-\mu)z/r \downarrow 1 \uparrow 3 - \mu z/r \downarrow 2 \uparrow 3$$

 $\mu = m \downarrow 2 / m \downarrow 1 + m \downarrow 2$

CR3BP: Lagrange Points

CR3BP: Zero Velocity Surfaces

8

Cranfield UNIVERSITY

Mission Architecture

- Mothership + CubeSat
 - Max deployment velocity 2 m/s
- Target: A binary asteroid system
 - ~15% of NEA population (Margot et al., 2002)
- Operational orbit in exterior region
 - Collision risk ruled out
- L2 is closed
 - No possible motion to interior region
- Landing on smaller companion (secondary) in local vertical direction
 - Maximum energy damping

Target Binary Asteroid Systems

Hypothetical Binary Asteroid

	Primary	Secondary
Radius [m]	1000	0.35 x R _{primary}
Density [g/cm ³]	2.6 (Yárnoz et al., 2014)	
Mass [kg]	1.1 x 10 ¹³	4.7 x 10 ¹¹
Mass Parameter (µ)	0.0411	
Orbit semi-major axis [m]	3.25 x R _{primary}	
Orbital period [h]	11.74648	
Sphere of Influence [m]	18952.93	

1996GT (65803) Didymos

	Primary	Secondary
Radius [m]	375 ± 50	85 ± 15
Density [g/cm ³]	1.7 ± 0.4	
Mass [kg]	3.75 x 10 ¹¹	4.37 x 10 ⁹
Mass Parameter (µ)	0.0115	-
Orbit semi-major axis [m]	1056.2	
Orbital period [h]	11.8992	
Sphere of Influence [m]	4868.81	

Transfer Trajectory Generation

Initial State = [*x*, *y*, *z*,*x*,*y*, *z*]

- Backwards integration from the surface
- Local vertical landing
- BiSection transfer trajectory search (Ren & Shan, 2014)
 - Upper and lower boundary velocities

L3

Transfer Trajectory Generation

_L3

Cranfield UNIVERSITY

Top view 4th iCubeSat Workshop, London, UK

Didymos Case - Energy to be Damped on Equatorial Landing Trajectories > 100 % 1 % limit 90 5 % limit 10 % limit 120 60 20 % limit 100 % limit %75 150 30 Percentage of Energy [%] Latitude [⁰] o <1% 1 % - 5 % <1% 50 % < 1 % 0 180 25 % 330 210 10 % 5 % 240 300 315 0 45 90 360 270 Top view

26.05.2015

4th iCubeSat Workshop, London, UK

Didymos Case - Velocity on Landing for Equatorial Trajectories [m/s] \geq 1 0.1 m/s limit 90 120 60 0.75 -anding Velocities [m/s] 150 30 < 0.1 m/s < 0.1 m/s Latitude [⁰] < 0.1 m/s 0 0.5 180 0 0.4 v_{escape} =0.37 0.3 0.2 210 330 0.1 v_{min}=0.0512 45 90 315 360 0 240 300 L2 270

26.05.2015

16

Results: Conclusion

- Equatorial regions offer more opportunities for landing than higher latitudes
- The regions closer to L2 point requires less energy to land
 - Thus, lower landing velocities
- The regions closer to L2 point offers more latitudes to be landed by less than L3 energy (up to polar latitudes)
- Deployment options for landings that are less than 6 hours are limited, at least 6-12 hours should be considered
- Deployment velocities are within the limits
- The higher density and increasing size result in more energetic landings
- Adding different perturbations would provide different insights to results

Cran

What's next?

- Trajectories under the effect of solar radiation pressure
- Uncertainty analysis
- Trajectories in Full R3BP with different perturbing sources
- Trajectories in Bi-CR3BP with the Sun Binary system (or with Jupiter for main belt binaries)
- Accurate shape, surface, density, gravity models
- Mission opportunities Payload/Subsystem studies for novel Cubesat missions for asteroid exploration

Thank you !

Questions?

26.05.2015

4th iCubeSat Workshop, London, UK

www.cranfield.ac.uk

Results: Landing on hypothetical binary asteroid in comparison to Didymos

		Hypothetical Binary Asteroid	
Size	Density	Larger	Higher
Energies of trajectories		Higher	
Percentage excess energy with respect to L2 energy		Higher	
Landing velocities		Higher	
Deployment velocities	Deployment positions	Higher	Various
Landing duration		Various	

Mission opportunities – Preliminary thoughts

- Multiple asteroid visits
 - Mothership concept
 - Optimised Low-thrust trajectories
- Asteroid subsurface mapping
 - Imaging spectrometers
 - Radars
 - Seismometers
- Surface imaging
 - Panoramic cameras
- Gravitational measurements
 - Accelerometers

Multipoint measurements (ray