

NanoSwarm: CubeSats Enabling a Discovery Class Mission

Jordi Puig-Suari Roland Coelho Tyvak Nano-Satellite Systems

NanoSwarm Mission Objectives

- Detailed investigation of Particles and Magnetic Fields to characterize the surface of airless planetary bodies
 - Specific target: Lunar Swirls (surface magnetic anomalies)
- Goals
 - Understand mechanisms of space weathering
 - Understand near-surface water formation and distribution on airless bodies
 - Understand how small bodies have generated dynamos and magnetized their crusts
 - Investigate the physics of particle-field interactions at the smallest scales
- Measurements:
 - Near-surface solar wind flux measurements across swirls
 - Near-surface magnetic field structure at a diverse set of lunar magnetic anomalies
 - Polar neutrons

Lunar Prospector magnetic field contours from 0 to 30 nT

NanoSwarm Mission Challenges

- Measurements at very low altitudes
 - Below 5Km
- High measurement density
- Multiple Locations
 - Several near-surface swirls
 - Polar Areas for Neutrons
- Different solar illumination conditions
 - Lunar day (28 earth days)

Solution Concept

- Large number of "disposable" Lunar impactors
 - Multiple locations & multiple times
 - Very low altitude measurements
 - Low-cost CubeSat based
 - Direct data dump to Earth
- Problems
 - Large ΔV requirements to reach Moon and target impacts
 - Potential long duration mission to satisfy different illumination requirements
 - Launch opportunities
 - -Volume and mass constraints
- Solution: Proven spacecraft to carry probes to the Moon

Space Vehicle Concept

LCROSS based carrier

- Low-Cost spacecraft
- Flight Proven
- Large ΔV Capability (>1km/s)
- Standard ESPA accommodations
 - 32 3U CubeSats (2x16)

Carrier Roles

- Inject into Lunar orbit
- Deploy CubeSats at appropriate times
- Support CubeSats: Thermal, Trickle Charge, Diagnostics

Benefits to CubeSats

- Low ΔV requirements
 - Impactor 50m/s Orbiter 100m/s
- Short mission duration
 - Impactor 11days Orbiter 3months
- Single launch for all mission requirements

CubeSats

Simple Design

- VACCO Hybrid propulsion (ΔV & Attitude Control)
- JPL IRIS deep space transponder (Navigation & Data Download)
- Tyvak Endeavor based avionics (C&DH and Attitude determination)

Instruments

- Nano-Solar Wind Ion Sensor (NanoSWIS) - UC Berkley

- Nano-Magnetometer (NanoMAG) - UCLA

- Nano-neutron Spectrometer (NanoNS) - APL

3 CubeSat types

- Day Impactor (Qty. 15 + 2 spares)
 - NanoSWIS + NanoMAG
- Night Impactor (Qty. 10)
 - NanoMAG
- Neutron Orbiter (Qty. 2 + 1 spare)
 - NanoNS

CubeSats Internal Configuration

Mission Concept Observations

- Collaboration Between Traditional Spacecraft & CubeSats
 - Key Enabler for Discovery class mission
 - Traditional spacecraft reliability is critical for carrier
- Carrier reduces CubeSats requirements & complexity
 - Shorter mission timeline
 - Environmental exposure
 - Propulsive Attitude control
 - Lower ΔV
 - Low complexity propulsion system
- Science measurements require extremely low altitude & multiple measurements
 - "Disposable" impactor is ideal sensor
 - Low-cost CubeSats provide measurement multiplicity & redundancy
- COTS based CubeSats provide low recurrent cost
 - Large numbers of identical CubeSats are "very affordable"
- Most required technologies available in CubeSat form factor
 - IRIS radio, Propulsion system, Avionics, Instruments, Deployers, . . .

Conclusions

- CubeSats can play at Discovery mission level
- Dangerous measurements

 Iow-cost disposable sensors
- Low-cost spacecraft can provide large measurement numbers
- Collaboration with traditional spacecraft creates new opportunities
- Science community must identify appropriate problems

