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Introduction
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« Whatis the smallest form factor for cluster
Mmissions?
> The CubeSat: Packaging challenges present
opportunities for fractionation

e But can a CubeSat Cluster accomplish a useful
mission for less cost than a monolith?

> Aurora concept will demonstrate LEO RF signal
measurement mission for under $3M

.- Thruster pair
W Without tanks

 What are the key enabling technologies in the
CubeSat form factor?

> Fractionation architecture to allow distribution of tasks %
> Propulsion, attitude actuators \\

» Formation flight and cluster algorithms

* Clusters provide flexibility, scalability, and redundancy..fo
interplanetary missions
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Goals, objectives of Aurora Efforts
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Goal: Produce a networked CubeSat cluster taking advantage of distributed systems to
execute a significant mission

A demonstration of a “minimalist” cluster architecture:

» Focus is on enabling technologies to create a lowest cost fractionated cluster
as an existence proof of CubeSat fractionation

- Develop streamlined algorithms to control cluster and attitude

- Utilize electrospray propulsion for actuation, off-the-shelf GPS and

sensors
Technologies Partners
> MotherCube Architecture: > MIT Space Propulsion Lab / Space Systems Lab
> Processing and downlink node ~ Novel propulsion concepts, ADCS

software
> Espace Inc.
> Payload & Telemetry System
> Southwest Research Institute
> Mission and RF support

» Cluster control algorithms
> 3-Axis Electrospray Thruster Slice:
> Positive attitude/position control
> DGPS corrections shared among cluster
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Drivers of Architecture Selection:

CubeSat Form Factor

* 3U CubeSat specifications limit size and

mass
» 3U:30x10x10cm, 4 kg Payload 3
> Limited 10-30 W power generation Payload 2
 Meeting this specification is very desirable: e soste
> Lower cost ($50k-100k materials, $50k PrpEe cPU subsystems
IaunCh) Payload 1 e
> Simpler and more frequent launch —
opportunities °
ADCS Payload 1
Distributing tasks is a key enabler Radio —
CPU
« Components can be bulky Poveer s =
> Optics to achieve desired focal length CPU subsystems
Power

> Antennas (esp. high-gain directional)
> Reaction wheel attitude control systems

Splitting up a satellite can ease size/weight
» Star cameras constraints and realize functions not

. oy previously possible within the CubeSat
Allow each Cube to specialize standard
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Drivers of Architecture Selection:

Distributed Sensing

Most missions benefit from Distributed

architecture (e.g. star or mesh topology)

> Large effective apertures
« Radio telescope
« Radar synthetic apertures

« Multiple-camera vision

> Distribute tasks to meet CubeSat
form factor

« MotherCube: Storage, processing
and downlink

(free up SWaP on PayloadCubes)

« PayloadCubes : more resources
devoted to payloads, scalable

¢ Optimized ADCS capability

* Redundancy, scalability, and
survivability for minimal cost

PayloadCube 1

ADCS

Radio
CPU
Power

PayloadCube 2

Sensor 2

ADCS

Radio
CPU
Power
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MotherCube

Storage

ADCS

Radio

CPU

Power
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Ground station

PayloadCube 4

Sensor 4

ADCS

Radio
CPU
Power

PayloadCube 3

Sensor 3

ADCS

Radio
CPU
Power

The central node, MotherCube, enables
distribution of tasks among platforms enabling
fractionation on the CubeSat scale
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Current Effort: RF Measurement Cluster

Selected as target mission following Phase | studies

« Detect and locate signals of interest
. . ) PayloadCube 1
» Accomplish basic on orbit

demonstration ability to detect \
VHF sources on ground during
PayloadCube 2

flyover and downlink for b
additional processing MotherCube s
* Instruments on PayloadCubes 3\
> Antennas

> Multiple directional and
omnidirectional antennas

> Electronics
» Reconfigurable FPGA ground /'
. tation = -
radio -,
> GPS-derived timing used
to tag signals
> 3-Axis thruster slice

«  MotherCube Serves as combiner
and downlink « Useful mission: locate an RF source

Source

» Mission Demonstration
« On-orbit proof of fractionated CubeSat cluster

« Flight heritage for propulsion concept
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Aurora MotherCube Concept
A CubeSat cluster’s primary 3U node —riicnr sciences

LEO SUN-SYNC CONFIGURATION

~1U available for Alternate Flower Petal
processing, Configuration
Comms, Storage, etc

« Central “hub” of distributed mission Payload Power: 15 W (burst, LEO)
* Handles downlink burden 7 W (continuous, LEO)
« Secondary higher performance Payload Mass: 1 kg
processor architecture proposed Attitude: 3-Axis stabilized
« Adaptable to other roles Pointing: +/- 5 degrees
* Modular design with ~1U available _ o _
(finer pointing possible)
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Sun-synchronous (Dusk-Dawn) Concept

e Dusk-Dawn Orbit lines up thrusters with velocity vector
> Scalable delta-V capability for spiral orbit transfers
> RF interposition, attitude and ranging possible for interplanetary

GPS Antenna

T —

Orbital Velocity

Cluster Control
Thrust

Payload Antenna

. e
= .
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MotherCube Components

Components stack up neatly COTS
(CubeSat Kit bus) .

>

>
>

>

>

> AeroAstro coarse sun sensor

COTS CubeSat

components offer low risk. g

Questionable radiation .

tolerance above LEO

Pumpkin, Inc.
> Chassis and hardware

processor module

 Clyde Space
> Solar panels

e Other assorted components

Under Development

FLIGHT SCI/IENCES

EPS - $10k

Flight computer with PIC24

Computer - $2k
Novatel GPS_ -

Batteries
EPS board with MPPTs

Novatel OEMV-1G differential
GPS receiver

L-com and Haigh-Farr antennas

AeroAstro Sun Sensor - 5k
Espace: Payload & Telemetry ;
Subsystem

MIT SPL: Electrospray Thruster
slice

Solar panels - $40k
Aurora Flight Sciences | 10
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Enabling Technology

* Electrospray Thruster Concept
(MIT SPL, Espace)

> Very fine thrust control: ~1 uN
» Low noise: 0.001 uN/sqrt(Hz)
> High I,: 1000 to 4000 sec

> Approx. <0.5 kg propellant for escape
velocity

 Novatel OEMV-1DF GPS Receiver

» Utilizing Novatel's RT-2 real-time kinematic
corrections

> MotherCube receiver crosslinks GPS
corrections to PayloadCubes in cluster 46 mm

RF interpositioning and star cameras
required for interplanetary
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Cluster Control

Challenge:

* Hold cluster geometry despite
differential drag, gravitational
disturbances

 Reduce propellant usage

* Linear Programming Strategy
» Reduces computational burden
> Guarantees convergence to a solution

« Larger bounding box when possible

> Reduce propellant usage when tight control
not required

* Thrusters allow tight control of cluster
formation

» Mixing of thrusters allows steering of thrust
vector

6/3/2012
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Summary
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Fractionation and distribution of operations

> Most applicable to volume/mass constrained platforms: CubeSat is at the
extreme

Aurora’s efforts focus on developing cluster flight & ACS algorithms, bus
architecture, and mission utility

Several key technologies enabling CubeSat clusters are applicable to
Interplanetary missions

» MotherCube/PayloadCube architecture for fractionation
» Low power thrusters for delta-V and precise attitude/position control
> Radios, processing electronics

Aurora’s CubeSat Cluster demonstration: affordable existence proof for
fractionation and of the utility of CubeSat cluster missions paving the way
for CubeSat clusters to leave LEO
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Backup, Additional Information
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Risk reduction and responsiveness
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* Funding for high-risk activities
Is limited
» Feasibility demonstration required

» CubeSat platform may be viable
not just for proof of concept, but for
attaining entire mission

 Use incremental architecture

Phase A
Proof of concept

Node 1

ADCS

Radio
CPU
Power

N

N

Phase B
Operation

Storage

Radio

CPU

Power

Ground station

N

Phase C
Extension

Node 2

ADCS

Radio
CPU
Power

Node 3

ADCS

Radio
CPU
Power

Node 4

ADCS

Radio
CPU
Power

Building a CubeSat cluster incrementally allows data
collection capability to scale with confidence and funding

Aurora Flight Sciences | 16

6/3/2012



Distributed sensing needs

» Large effective apertures
> Radio telescope
> Radar Node 1 Node 4
> Stereo vision ADCS ADCS

. Radio Radio
 Parallelizable tasks — \ / =

> Communications on different channels

Power Power

Storage
> Photometry of multiple stars o
« Use distributed architecture (e.g. " cPU "
star or mesh topology) / S
ADCS ADCS
Radio Radio
CPU CPU
Power Power

Ground station

A distributed CubeSat cluster enables large aperture
sensing functions that were previously infeasible
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Secondary Processing Architecture

* Proposed secondary avionics
architecture to augment primary
avionics and add greater
processing power

> OMAP, Atom, or PowerPC
processor

» FPGA signal processing
> PCI-Express switch

« 250 MB/s full-duplex transfers
between peripherals

> Support for Wi-Fi and WiMAX

6/3/2012

» :.—-_ SCIENCES

Dual-bus architecture
for adding high-bandwidth components

and additional processing

|
g L~ Payload = ——=
=
| oL oy MR
switch
~—{_ Storage _~—~
Secondary
{via interface board) _""__:I Avionics —
Rt O e e
(via Cubesat Kitbus) | | _ Sensors
e
Flight board
F—
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Thrust Mixing and Torques

Algorithms designed to run quickly with
limited resources
> LRQ approach, penalizing use of off-axis

thrusters
« String of Pearls, Circular Concentric
ellipses

« Offset thrusters mixed with torque coils
» Limited use of non-Z axis thrusters for
simplicity
» Torque coils for attitude control and

attitude stiffness.
ROLL PITCH YAW +X & o

Body Axis
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Cluster Mission Possibilities

Possible missions and variations
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Potential Transition Customers

e  MicroMAS

> May cover additional bands with additional
PayloadCubes

> May perform onboard data reduction in
MotherCube

NASA

» Funding MicroMAS instrument
development

DoD
> MicroMAS weather mission

* ExoplanetSat

> Additional payload cubes can monitor
multiple stars in parallel

NASA
> Potential scientific mission

* RF Sparse Array

> Scalable PayloadCubes to cover additional
frequencies

» Perform processing on MotherCube

US Army

> Interested in augment existing
assets

» Cloud Cover Imager

> Cluster PayloadCubes to carry various
wide swath imagers

» Perform storage, downlink on MotherCube

Intelligence Agencies

> Low cost mission to augment and
gueue higher value assets
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